scholarly journals Recombinant annexin A2 inhibits peripheral leukocyte activation and brain infiltration after traumatic brain injury

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ning Liu ◽  
Jinrui Han ◽  
Yadan Li ◽  
Yinghua Jiang ◽  
Samuel X. Shi ◽  
...  

Abstract Background Traumatic brain injury (TBI) is a significant cause of death and disability worldwide. The TLR4-NFκB signaling cascade is the critical pro-inflammatory activation pathway of leukocytes after TBI, and modulating this signaling cascade may be an effective therapeutic target for treating TBI. Previous studies indicate that recombinant annexin A2 (rA2) might be an interactive molecule modulating the TLR4-NFκB signaling; however, the role of rA2 in regulating this signaling pathway in leukocytes after TBI and its subsequent effects have not been investigated. Methods C57BL/6 mice were subjected to TBI and randomly divided into groups that received intraperitoneal rA2 or vehicle at 2 h after TBI. The peripheral leukocyte activation and infiltrating immune cells were examined by flow cytometry, RT-qPCR, and immunostaining. The neutrophilic TLR4 expression on the cell membrane was examined by flow cytometry and confocal microscope, and the interaction of annexin A2 with TLR4 was assessed by co-immunoprecipitation coupled with Western blotting. Neuroinflammation was measured via cytokine proteome profiler array and RT-qPCR. Neurodegeneration was determined by Western blotting and immunostaining. Neurobehavioral assessments were used to monitor motor and cognitive function. Brain tissue loss was assessed via MAP2 staining. Results rA2 administration given at 2 h after TBI significantly attenuates neutrophil activation and brain infiltration at 24 h of TBI. In vivo and in vitro data show that rA2 binds to and reduces TLR4 expression on the neutrophil surface and suppresses TLR4/NFκB signaling pathway in neutrophils at 12 h after TBI. Furthermore, rA2 administration also reduces pro-inflammation of brain tissues within 24 h and neurodegeneration at 48 h after TBI. Lastly, rA2 improves long-term sensorimotor ability and cognitive function, and reduces brain tissue loss at 28 days after TBI. Conclusions Systematic rA2 administration at 2 h after TBI significantly inhibits activation and brain infiltration of peripheral leukocytes, especially neutrophils at the acute phase. Consequently, rA2 reduces the detrimental brain pro-inflammation-associated neurodegeneration and ultimately ameliorates neurological deficits after TBI. The underlying molecular mechanism might be at least in part attributed to rA2 bindings to pro-inflammatory receptor TLR4 in peripheral leukocytes, thereby blocking NFκB signaling activation pathways following TBI.

2019 ◽  
Vol 20 (24) ◽  
pp. 6125 ◽  
Author(s):  
Ning Liu ◽  
Yinghua Jiang ◽  
Joon Yong Chung ◽  
Yadan Li ◽  
Zhanyang Yu ◽  
...  

Our laboratory and others previously showed that Annexin A2 knockout (A2KO) mice had impaired blood–brain barrier (BBB) development and elevated pro-inflammatory response in macrophages, implying that Annexin A2 (AnxA2) might be one of the key endogenous factors for maintaining homeostasis of the neurovascular unit in the brain. Traumatic brain injury (TBI) is an important cause of disability and mortality worldwide, and neurovascular inflammation plays an important role in the TBI pathophysiology. In the present study, we aimed to test the hypothesis that A2KO promotes pro-inflammatory response in the brain and worsens neurobehavioral outcomes after TBI. TBI was conducted by a controlled cortical impact (CCI) device in mice. Our experimental results showed AnxA2 expression was significantly up-regulated in response to TBI at day three post-TBI. We also found more production of pro-inflammatory cytokines in the A2KO mouse brain, while there was a significant increase of inflammatory adhesion molecules mRNA expression in isolated cerebral micro-vessels of A2KO mice compared with wild-type (WT) mice. Consistently, the A2KO mice brains had a significant increase in leukocyte brain infiltration at two days after TBI. Importantly, A2KO mice had significantly worse sensorimotor and cognitive function deficits up to 28 days after TBI and significantly larger brain tissue loss. Therefore, these results suggested that AnxA2 deficiency results in exacerbated early neurovascular pro-inflammation, which leads to a worse long-term neurologic outcome after TBI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chongjie Cheng ◽  
Xiaoshu Wang ◽  
Yinghua Jiang ◽  
Yadan Li ◽  
Zhengbu Liao ◽  
...  

Microvascular failure is one of the key pathogenic factors in the dynamic pathological evolution after traumatic brain injury (TBI). Our laboratory and others previously reported that Annexin A2 functions in blood-brain barrier (BBB) development and cerebral angiogenesis, and recombinant human Annexin A2 (rA2) protected against hypoxia plus IL-1β-induced cerebral trans-endothelial permeability in vitro, and cerebral angiogenesis impairment of AXNA2 knock-out mice in vivo. We thereby hypothesized that ANXA2 might be a cerebrovascular therapy candidate that targets early BBB integrity disruption, and subacute/delayed cerebrovascular remodeling after TBI, ultimately improve neurological outcomes. In a controlled cortex impact (CCI) mice model, we found rA2 treatment (1 mg/kg) significantly reduced early BBB disruption at 24 h after TBI; and rA2 daily treatment for 7 days augmented TBI-induced mRNA levels of pro-angiogenic and endothelial-derived trophic factors in cerebral microvessels. In cultured human brain microvascular endothelial cells (HBMEC), through MAPKs array, we identified that rA2 significantly activated Akt, ERK, and CREB, and the activated CREB might be responsible for the rA2-induced VEGF and BDNF expression. Moreover, rA2 administration significantly increased cerebral angiogenesis examined at 14 days and vessel density at 28 days after TBI in mice. Consistently, our results validated that rA2 significantly induced angiogenesis in vitro, evidenced by tube formation and scratched migration assays in HBMEC. Lastly, we demonstrated that rA2 improved long-term sensorimotor and cognitive function, and reduced brain tissue loss at 28 days after TBI. Our findings suggest that rA2 might be a novel vascular targeting approach for treating TBI.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 586 ◽  
Author(s):  
Hamilton Roschel ◽  
Bruno Gualano ◽  
Sergej M. Ostojic ◽  
Eric S. Rawson

There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer’s disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zeyu Wang ◽  
Haichen Wang ◽  
Ryan Becker ◽  
Joseph Rufo ◽  
Shujie Yang ◽  
...  

AbstractTraumatic brain injury (TBI) is a global cause of morbidity and mortality. Initial management and risk stratification of patients with TBI is made difficult by the relative insensitivity of screening radiographic studies as well as by the absence of a widely available, noninvasive diagnostic biomarker. In particular, a blood-based biomarker assay could provide a quick and minimally invasive process to stratify risk and guide early management strategies in patients with mild TBI (mTBI). Analysis of circulating exosomes allows the potential for rapid and specific identification of tissue injury. By applying acoustofluidic exosome separation—which uses a combination of microfluidics and acoustics to separate bioparticles based on differences in size and acoustic properties—we successfully isolated exosomes from plasma samples obtained from mice after TBI. Acoustofluidic isolation eliminated interference from other blood components, making it possible to detect exosomal biomarkers for TBI via flow cytometry. Flow cytometry analysis indicated that exosomal biomarkers for TBI increase in the first 24 h following head trauma, indicating the potential of using circulating exosomes for the rapid diagnosis of TBI. Elevated levels of TBI biomarkers were only detected in the samples separated via acoustofluidics; no changes were observed in the analysis of the raw plasma sample. This finding demonstrated the necessity of sample purification prior to exosomal biomarker analysis. Since acoustofluidic exosome separation can easily be integrated with downstream analysis methods, it shows great potential for improving early diagnosis and treatment decisions associated with TBI.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Roslyn A Taylor ◽  
Matthew D Hammond ◽  
Youxi Ai ◽  
Lauren H Sansing

Introduction: Intracerebral hemorrhage (ICH) results in the activation of microglia, the resident immune cells of the central nervous system. Microglia may polarize into an M1, pro-inflammatory phenotype, or an M2 phenotype associated with repair. CX3CR1 is a chemokine receptor on microglia and monocyte subsets. CX3CR1-null microglia have been shown to have dysregulated inflammation. We hypothesize that CX3CR1-null microglia have a prolonged M1 phenotype, contributing to worse functional outcome after ICH. Methods: ICH was modeled by injection of 20μl of blood into the right striatum. Neurological deficit was quantified using digital gait analysis, cylinder test, and beam walking. Mice were sacrificed 14 days after ICH; brains were harvested for flow cytometry and immunohistochemistry (IHC). C57BL/6 (WT) and CX3CR1 GFP/GFP (CX3CR1-null) mice were irradiated and reconstituted with bone marrow from WT mice carrying the congenic marker CD45.1 to generate bone marrow chimeras (CD45.1WT or CD45.1CX3CR1-null). M1 microglia were identified as expressing MHCII and M2 microglia with CD206. Results: The CD45.1CX3CR1-null mice show worse functional outcome 14 days after ICH by cylinder test (p=0.002), beam walking (p=<0.001) and gait analysis (p=0.02). By flow cytometry, few peripheral leukocytes remain in the brain at 14 days, indicating that F4/80 + and CD11b + cells visualized by IHC are likely microglia, not peripheral macrophages. By IHC, CD45.1 CX3CR1-null mice have significantly more amoeboid F4/80 + MHCII + cells per field (M1 microglia) than CD45.1WT mice (p=0.02). CD45.1 CX3CR1-null mice have significantly fewer CD11b + CD206 + cells per field (M2 microglia) compared to CD45.1WT mice (p=0.04). Conclusions: Our results suggest microglial CX3CR1 signaling is necessary for microglia to transition from M1 to M2 and contribute to recovery after ICH.


Sign in / Sign up

Export Citation Format

Share Document