scholarly journals Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments

Author(s):  
Antonio Rodríguez-Fernández ◽  
Joan Lobo-Prat ◽  
Josep M. Font-Llagunes

AbstractGait disorders can reduce the quality of life for people with neuromuscular impairments. Therefore, walking recovery is one of the main priorities for counteracting sedentary lifestyle, reducing secondary health conditions and restoring legged mobility. At present, wearable powered lower-limb exoskeletons are emerging as a revolutionary technology for robotic gait rehabilitation. This systematic review provides a comprehensive overview on wearable lower-limb exoskeletons for people with neuromuscular impairments, addressing the following three questions: (1) what is the current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what is the methodology used in the clinical validations of wearable lower-limb exoskeletons?, and (3) what are the benefits and current evidence on clinical efficacy of wearable lower-limb exoskeletons? We analyzed 87 clinical studies focusing on both device technology (e.g., actuators, sensors, structure) and clinical aspects (e.g., training protocol, outcome measures, patient impairments), and make available the database with all the compiled information. The results of the literature survey reveal that wearable exoskeletons have potential for a number of applications including early rehabilitation, promoting physical exercise, and carrying out daily living activities both at home and the community. Likewise, wearable exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary health conditions related to sedentariness, with all the advantages that this entails. However, the use of this technology is still limited by heavy and bulky devices, which require supervision and the use of walking aids. In addition, evidence supporting their benefits is still limited to short-intervention trials with few participants and diversity among their clinical protocols. Wearable lower-limb exoskeletons for gait rehabilitation are still in their early stages of development and randomized control trials are needed to demonstrate their clinical efficacy.

2020 ◽  
Author(s):  
Antonio Rodríguez-Fernández ◽  
Joan Lobo-Prat ◽  
Josep M. Font-Llagunes

Abstract Gait disorders can reduce the quality of life for people with neuromuscular impairments. Therefore, walking recovery is one of the main priorities for counteracting sedentary lifestyle, reducing secondary health conditions and restoring legged mobility. At present, wearable powered lower-limb exoskeletons are emerging as a revolutionary technology for robotic gait rehabilitation. This systematic review provides a comprehensive overview on wearable lower-limb exoskeletons for people with neuromuscular impairments, addressing the following three questions: (1) what is the current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what is the methodology used in the clinical validations of wearable lower-limb exoskeletons?, and (3) what are the benefits and current evidence on clinical efficacy of wearable lower-limb exoskeletons? We analyzed 87 clinical studies focusing on both device technology (e.g., actuators, sensors, structure) and clinical aspects (e.g., training protocol, outcome measures, patient impairments), and make available the database with all the compiled information. The results of the literature survey reveal that wearable exoskeletons have potential for a number of applications including early rehabilitation, promoting physical exercise, and carrying out daily living activities both at home and the community. Likewise, wearable exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary health conditions related to sedentariness, with all the advantages that this entails. However, the use of this technology is still limited by heavy and bulky devices, which require supervision and the use of walking aids. In addition, evidence supporting their benefits is still limited to short-intervention trials with few participants and diversity among their clinical protocols. Wearable lower-limb exoskeletons for gait rehabilitation are still in their early stages of development and randomized control trials are needed to demonstrate their clinical efficacy.


2020 ◽  
Author(s):  
Antonio Rodríguez-Fernández ◽  
Joan Lobo-Prat ◽  
Josep M. Font-Llagunes

Abstract Gait disorders can reduce the quality of life for people with neuromuscular impairments. Therefore, walking recovery is one of the main priorities for counteracting sedentary lifestyle, reducing secondary health conditions and restoring legged mobility. At present, wearable powered lower-limb exoskeletons are emerging as a revolutionary technology for robotic gait rehabilitation. This systematic review provides a comprehensive overview on wearable lower-limb exoskeletons for people with neuromuscular impairments, addressing the following three questions: (1) what is the current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what are the benefits and risks for exoskeleton users?, and (3) what is the current evidence on clinical efficacy for wearable exoskeletons?. We analyzed 87 clinical studies focusing on both device technology (e.g., actuators, sensors, structure) and clinical aspects (e.g., training protocol, outcome measures, patient impairments), and make available the database with all the compiled information. The results of the literature survey reveal that wearable exoskeletons have potential for a number of applications including early rehabilitation, promoting physical exercise, and carrying out daily living activities both at home and the community. Likewise, wearable exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary health conditions related to sedentariness, with all the advantages that this entails. However, the use of this technology is still limited by heavy and bulky devices, which require supervision and the use of walking aids. In addition, evidence supporting their benefits is still limited to short-intervention trials with few participants and diversity among their clinical protocols. Wearable lower-limb exoskeletons for gait rehabilitation are still in their early stages of development and randomized control trials are needed to demonstrate their clinical efficacy.


2020 ◽  
Author(s):  
Ben Grodzinski ◽  
Rory Durham ◽  
Oliver Mowforth ◽  
Daniel Stubbs ◽  
Mark R N Kotter ◽  
...  

Abstract Objective Degenerative cervical myelopathy (DCM) is a disabling neurological condition. The underlying degenerative changes are known to be more common with age, but the impact of age on clinical aspects of DCM has never been synthesised. The objective of this study is to determine whether age is a significant predictor in three domains—clinical presentation, surgical management and post-operative outcomes of DCM. Methods a systematic review of the Medline and Embase databases (inception to 12 December 2019), registered with PROSPERO (CRD42019162077) and reported in accordance with preferred reporting items of systematic reviews and meta-analysis (PRISMA) guidelines, was conducted. The inclusion criteria were full text articles in English, evaluating the impact of age on clinical aspects of DCM. Results the initial search yielded 2,420 citations, of which 206 articles were eventually included. Age was found to be a significant predictor in a variety of measures. Within the presentation domain, older patients have a worse pre-operative functional status. Within the management domain, older patients are more likely to undergo posterior surgery, with more levels decompressed. Within the outcomes domain, older patients have a worse post-operative functional status, but a similar amount of improvement in functional status. Because of heterogenous data reporting, meta-analysis was not possible. Conclusion the current evidence demonstrates that age significantly influences the presentation, management and outcomes of DCM. Although older patients have worse health at all individual timepoints, they experience the same absolute benefit from surgery as younger patients. This finding is of particular relevance when considering the eligibility of older patients for surgery.


2019 ◽  
Vol 9 (14) ◽  
pp. 2868 ◽  
Author(s):  
Alice De Luca ◽  
Amy Bellitto ◽  
Sergio Mandraccia ◽  
Giorgia Marchesi ◽  
Laura Pellegrino ◽  
...  

Several exoskeletons have been developed and increasingly used in clinical settings for training and assisting locomotion. These devices allow people with severe motor deficits to regain mobility and sustain intense and repetitive gait training. However, three factors might affect normal muscle activations during walking: the assistive forces that are provided during walking, the crutches or walker that are always used in combination with the device, and the mechanical structure of the device itself. To investigate these effects, we evaluated eight healthy volunteers walking with the Ekso, which is a battery-powered, wearable exoskeleton. They walked supported by either crutches or a walker under five different assistance modalities: bilateral maximum assistance, no assistance, bilateral adaptive assistance, and unilateral adaptive assistance on each leg. Participants also walked overground without the exoskeleton. Surface electromyography was recorded bilaterally, and the statistical parametric mapping approach and muscle synergies analysis were used to investigate differences in muscular activity across different walking conditions. The lower limb muscle activations while walking with the Ekso were not influenced by the use of crutches or walker aids. Compared to normal walking without robotic assistance, the Ekso reduced the amplitude of activation for the distal lower limb muscles while changing the timing for the others. This depended mainly on the structure of the device, and not on the type or level of assistance. In fact, the presence of assistance did not change the timing of the muscle activations, but instead mainly had the effect of increasing the level of activation of the proximal lower limb muscles. Surprisingly, we found no significant changes in the adaptive control with respect to a maximal fixed assistance that did not account for subjects’ performance. These are important effects to take into careful considerations in clinics where these devices are used for gait rehabilitation in people with neurological diseases.


Author(s):  
Chen Su ◽  
Ao Chai ◽  
Xikai Tu ◽  
Hongyu Zhou ◽  
Haiqiang Wang ◽  
...  

Nerve injury can cause lower limb paralysis and gait disorder. Currently lower limb rehabilitation exoskeleton robots used in the hospitals need more power to correct abnormal motor patterns of stroke patients’ legs. These gait rehabilitation robots are powered by cumbersome and bulky electric motors, which provides a poor user experience. A newly developed gait rehabilitation exoskeleton robot actuated by low-cost and lightweight pneumatic artificial muscles (PAMs) is presented in this research. A model-free proxy-based sliding mode control (PSMC) strategy and a model-based chattering mitigation robust variable control (CRVC) strategy were developed and first applied in rehabilitation trainings, respectively. As the dynamic response of PAM due to the compressed air is low, an innovative intention identification control strategy was taken in active trainings by the use of the subject’s intention indirectly through the estimation of the interaction force between the subject’s leg and the exoskeleton. The proposed intention identification strategy was verified by treadmill-based gait training experiments.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252193
Author(s):  
Lucinda Rose Bunge ◽  
Ashleigh Jade Davidson ◽  
Benita Roslyn Helmore ◽  
Aleksandra Daniella Mavrandonis ◽  
Thomas David Page ◽  
...  

Background Cerebral palsy (CP) is a leading cause of childhood disability. The motor impairments of individuals with CP significantly affect the kinematics of an efficient gait pattern. Robotic therapies have become increasingly popular as an intervention to address this. Powered lower limb exoskeletons (PoLLE) are a novel form of robotic therapy that allow the individual to perform over-ground gait training and yet its effectiveness for CP is unknown. Purpose To determine the effectiveness of PoLLE use on gait in individuals with CP. Method A systematic search of eight electronic databases was conducted in March 2020. Studies included children (0–18 years) and or adults (18+ years) diagnosed with CP who used a PoLLE for gait training. This review was conducted and reported in line with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement, with the methodology registered with PROSPERO (CRD42020177160). A modified version of the McMaster critical review form for quantitative studies was used to assess the methodological quality. Due to the heterogeneity of the included studies, a descriptive synthesis using the National Health & Medical Research Council (NHMRC) FORM framework was undertaken. Results Of the 2089 studies screened, ten case series and three case studies met the inclusion criteria highlighting the current evidence base is emerging and low level. A range of PoLLEs were investigated with effectiveness measured by using a number of outcome measures. Collectively, the body of evidence indicates there is some consistent positive evidence on the effectiveness of PoLLE in improving gait in individuals with CP, with minimal adverse effects. While this is a positive and encouraging finding for an emerging technology, methodological concerns also need to be acknowledged. Conclusion With rapidly evolving technology, PoLLEs could play a transformative role in the lives of people impacted by CP. Ongoing research is required to further strengthen the evidence base and address current methodological concerns.


Author(s):  
Rüdiger Rupp ◽  
Daniel Schließmann ◽  
Christian Schuld ◽  
Norbert Weidner

Technology plays an important role in the rehabilitation of patients with impairments of the lower extremity due to disease or trauma of the central nervous system (CNS). In gait rehabilitation, compensatory or restorative strategies are applied depending on the time after trauma and the severity of impairment. Advances in the understanding of CNS plasticity led to the establishment of task-oriented restorative therapies, first of all body weight supported treadmill training, either manually or robotically assisted. Although robotic therapies have not been shown to be superior, they relieve therapists from the exhaustive work of assisting the stepping movements. At this point, locomotion robots provide advanced therapeutic options like intensive gait training also at home and improvement of training quality through the integration of real-time movement feedback. For enhancement of mobility in individuals with severe sensorimotor impairments and the associated limited potential for recovery, compensatory strategies including wheelchairs and more recently active exoskeletons need to be considered. It will be exciting to see whether technological progress in mechatronics, energy storage, and intuitive control will result in exoskeletons capable of replacing traditional walking aids in everyday life conditions.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 585
Author(s):  
Lee Sandwith ◽  
Patrice Forget

Background and Objectives: In this paper, we investigated the efficacy of statin therapy on cardiovascular disease (CVD) reduction in adults with no known underlying health conditions by undertaking a meta-analysis and systematic review of the current evidence. Materials and Methods: We performed a systematic search to identify Primary Prevention Randomized Controlled Trials (RCTs) that compared statins with a control group where CVD events or mortality were the primary end point. Identified RCTs were evaluated and classified into categories depending on relevance in order to determine which type of meta-analysis would be feasible. Results: No differences were observed between categories with the exception of relative risk for all CVD events combined which showed a 12% statistically significant difference favouring studies which were known to include participants without underlying health conditions. Strong negative correlations between number-need-to-treat (NNT) and LDL-C reduction were observed for all Coronary Heart Disease (CHD) outcomes combined and all CVD outcomes combined. Conclusions: This project highlights the need for further research on the effects of statins on participants who do not suffer from underlying health conditions, given that no such studies have been conducted.


Author(s):  
SMH Phonela ◽  
R Goller ◽  
M Karsas

ABSTRACT Osteogenesis imperfecta (OI) is a metabolic bone disorder commonly encountered in orthopaedic practice within the context of a multidisciplinary team. Although relatively rare, it is among the most researched of the skeletal dysplasias, making it challenging for the general orthopaedic surgeon to keep abreast with current evidence. The aim of this review article is to provide a comprehensive overview of OI for the general orthopaedic surgeon. It touches on the relevant epidemiology, pathology and clinical aspects of the condition. A discussion of the background and current topical issues surrounding the classification systems, and the medical and orthopaedic management aspects follows. The main focus of this review is on the peri-operative orthopaedic care of the appendicular musculoskeletal system. We trust it will equip the general orthopaedic surgeon with concise, up-to-date and relevant information to efficiently manage affected patients and caregivers in South Africa. Level of evidence: Level 5 Keywords: osteogenesis imperfecta, type 1 collagen, multidisciplinary management, bisphosphonates, Fassier-Duval rods


2016 ◽  
pp. sjw178 ◽  
Author(s):  
Russell S. Frautschi ◽  
Ahmed M. Hashem ◽  
Brianna Halasa ◽  
Cagri Cakmakoglu ◽  
James E. Zins

Sign in / Sign up

Export Citation Format

Share Document