scholarly journals Ankle resistance with a unilateral soft exosuit increases plantarflexor effort during pushoff in unimpaired individuals

Author(s):  
Krithika Swaminathan ◽  
Sungwoo Park ◽  
Fouzia Raza ◽  
Franchino Porciuncula ◽  
Sangjun Lee ◽  
...  

Abstract Background Ankle-targeting resistance training for improving plantarflexion function during walking increases rehabilitation intensity, an important factor for motor recovery after stroke. However, understanding of the effects of resisting plantarflexion during stance on joint kinetics and muscle activity—key outcomes in evaluating its potential value in rehabilitation—remains limited. This initial study uses a unilateral exosuit that resists plantarflexion during mid-late stance in unimpaired individuals to test the hypotheses that when plantarflexion is resisted, individuals would (1) increase plantarflexor ankle torque and muscle activity locally at the resisted ipsilateral ankle, but (2) at higher forces, exhibit a generalized response that also uses the unresisted joints and limb. Further, we expected (3) short-term retention into gait immediately after removal of resistance. Methods Ten healthy young adults walked at 1.25 m s−1 for four 10-min discrete bouts, each comprising baseline, exposure to active exosuit-applied resistance, and post-active sections. In each bout, a different force magnitude was applied based on individual baseline ankle torques. The peak resistance torque applied by the exosuit was 0.13 ± 0.01, 0.19 ± 0.01, 0.26 ± 0.02, and 0.32 ± 0.02 N m kg−1, in the LOW, MED, HIGH, and MAX bouts, respectively. Results (1) Across all bouts, participants increased peak ipsilateral biological ankle torque by 0.13–0.25 N m kg−1 (p < 0.001) during exosuit-applied resistance compared to corresponding baselines. Additionally, ipsilateral soleus activity during stance increased by 5.4–11.3% (p < 0.05) in all but the LOW bout. (2) In the HIGH and MAX bouts, vertical ground reaction force decreased on the ipsilateral limb while increasing on the contralateral limb (p < 0.01). Secondary analysis found that the force magnitude that maximized increases in biological ankle torque without significant changes in limb loading varied by subject. (3) Finally, peak ipsilateral plantarflexion angle increased significantly during post-exposure in the intermediate HIGH resistance bout (p < 0.05), which corresponded to the greatest average increase in soleus activity (p > 0.10). Conclusions Targeted resistance of ankle plantarflexion during stance by an exosuit consistently increased local ipsilateral plantarflexor effort during active resistance, but force magnitude will be an important parameter to tune for minimizing the involvement of the unresisted joints and limb during training.

2013 ◽  
Vol 38 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Hassan Saeedi ◽  
Mohammad E Mousavi ◽  
Basir Majddoleslam ◽  
Mehdi Rahgozar ◽  
Gholamreza Aminian ◽  
...  

Background:Due to blocking of pronation/dorsiflexion in flexible flat foot and restriction of these movements in using the University of California Berkeley Laboratory orthosis, provided pressures in sole by the orthosis were increased. Therefore, this article describes the evaluation of modified foot orthosis with flexible structure in the management of individuals with flexible flat foot.Case description and method:The patient was a 21-year-old male who had symptomatic flat foot. The modified foot orthosis included movable surface and the outside structure. The modified foot orthosis was evaluated by standing foot X-ray, comfort rate, electromyography of leg muscle and vertical ground reaction force during walking.Findings and outcomes:The modified foot orthosis improved the foot alignment and decreased the symptoms of flat foot with more comfort. Subtalar position by sub-maximum supination had higher position than neutral in sagittal plane. It may increase the muscle activity of peroneus longus by 7% compared to barefoot, and there was a decrease of 11% ground reaction force in mid stance.Conclusion:The result of this single case evaluation only proposed the feasibility of this modified insole as the orthotic treatment in flexible flat foot.Clinical relevanceThe modified foot orthosis, which is mobile in the midfoot, is an orthosis for walking and standing in subjects with flexible flat foot.


2017 ◽  
Vol 33 (3) ◽  
pp. 211-215
Author(s):  
Tomomasa Nakamura ◽  
Yuriko Yoshida ◽  
Hiroshi Churei ◽  
Junya Aizawa ◽  
Kenji Hirohata ◽  
...  

The aim of this study was to analyze the effect of teeth clenching on dynamic balance at jump landing. Twenty-five healthy subjects performed jump-landing tasks with or without teeth clenching. The first 3 trials were performed with no instruction; subsequently, subjects were ordered to clench at the time of landing in the following 3 trials. We collected the data of masseter muscle activity by electromyogram, the maximum vertical ground reaction force (vGRFmax) and center of pressure (CoP) parameters by force plate during jump-landing. According to the clenching status of control jump-landing, all participants were categorized into a spontaneous clenching group and no clenching group, and the CoP data were compared. The masseter muscle activity was correlated with vGRFmax during anterior jump-landing, while it was not correlated with CoP. In comparisons between the spontaneous clenching and the no clenching group during anterior jump-landing, the spontaneous clenching group showed harder landing and the CoP area became larger than the no clenching group. There were no significant differences between pre- and postintervention in both spontaneous clenching and no clenching groups. The effect of teeth clenching on dynamic balance during jump-landing was limited.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 763 ◽  
Author(s):  
Clayton ◽  
Hobbs

Gaits are typically classified as walking or running based on kinematics, the shape of the vertical ground reaction force (GRF) curve, and the use of inverted pendulum or spring-mass mechanics during the stance phase. The objectives of this review were to describe the biomechanical characteristics that differentiate walking and running gaits, then apply these criteria to classify and compare the enhanced natural gait of collected trot with the artificial gaits of passage and piaffe as performed by highly trained dressage horses. Limb contact and lift off times were used to determine contact sequence, limb phase, duty factor, and aerial phase duration. Ground reaction force data were plotted to assess fore and hind limb loading patterns. The center of mass (COM) trajectory was evaluated in relation to changes in potential and kinetic energy to assess the use of inverted pendulum and spring-mass mechanics. Collected trot and passage were classified as running gaits according to all three criteria whereas piaffe appears to be a hybrid gait combining walking kinematics with running GRFs and COM mechanics. The hind limbs act as springs and show greater limb compression in passage and piaffe compared with trot, whereas the forelimbs behave more like struts showing less compression in passage and piaffe than in trot.


2020 ◽  
Vol 1 ◽  
Author(s):  
Amirreza Naseri ◽  
Martin Grimmer ◽  
André Seyfarth ◽  
Maziar Ahmad Sharbafi

Abstract This article presents a novel neuromechanical force-based control strategy called FMCA (force modulated compliant ankle), to control a powered prosthetic foot. FMCA modulates the torque, based on sensory feedback, similar to neuromuscular control approaches. Instead of using a muscle reflex-based approach, FMCA directly exploits the vertical ground reaction force as sensory feedback to modulate the ankle joint impedance. For evaluation, we first demonstrated how FMCA can predict human-like ankle torque for different walking speeds. Second, we implemented the FMCA in a neuromuscular transtibial amputee walking simulation model to validate if the approach can be used to achieve stable walking and to compare the performance to a neuromuscular reflex-based controller that is already used in a powered ankle. Compared to the neuromuscular model-based approach, the FMCA is a simple solution with a sufficient push-off that can provide stable walking. Third, to assess the ability of the FMCA to generate human-like ankle biomechanics during walking at the preferred speed, we implemented this strategy in a powered prosthetic foot and performed experiments with a non-amputee subject. The results confirm that, for this subject, FMCA can be used to mimic the non-amputee reference ankle torque and the reference ankle angle. The findings of this study support the applicability and advantages of a new bioinspired control approach for assisting amputees. Future experiments should investigate the applicability to other walking speeds and the applicability to the target population.


2005 ◽  
Vol 14 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Joseph M. Hart ◽  
Jamie L. Leonard ◽  
Christopher D. Ingersoll

Context:Despite recent findings regarding lower extremity function after cryotherapy, little is known of the neuromuscular, kinetic, and kinematic changes that might occur during functional tasks.Objective:To evaluate changes in ground-reaction forces, muscle activity, and knee-joint flexion during single-leg landings after 20-minute knee-joint cryotherapy.Design:1 × 4 repeated-measures, time-series design.Setting:Research laboratory.Patients or Other Participants:20 healthy male and female subjects.Intervention:Subjects performed 5 single-leg landings before, immediately after, and 15 and 30 minutes after knee-joint cryo-therapy.Main Outcome Measures:Ground-reaction force, knee-joint flexion, and muscle activity of the gastrocnemius, hamstrings, quadriceps, and gluteus medius.Results:Cryotherapy did not significantly (P> .05) change maximum knee-joint flexion, vertical ground-reaction force, or average muscle activity during a single-leg landing.Conclusion:Knee-joint cryotherapy might not place the lower extremity at risk for injury during landing.


Sign in / Sign up

Export Citation Format

Share Document