scholarly journals Annexin A2 antibodies but not inhibitors of the annexin A2 heterotetramer impair productive HIV-1 infection of macrophages in vitro

2016 ◽  
Vol 13 (1) ◽  
Author(s):  
Andrew W. Woodham ◽  
Adriana M. Sanna ◽  
Julia R. Taylor ◽  
Joseph G. Skeate ◽  
Diane M. Da Silva ◽  
...  
Blood ◽  
2006 ◽  
Vol 107 (8) ◽  
pp. 3342-3349 ◽  
Author(s):  
Yves Laumonnier ◽  
Tatiana Syrovets ◽  
Ladislav Burysek ◽  
Thomas Simmet

Abstract We have previously demonstrated that plasmin acts as a potent proinflammatory activator of human peripheral monocytes. Here we identify the annexin A2 heterotetramer, composed of annexin A2 and S100A10, as a receptor for the plasmin-induced signaling in human monocytes. Monocytes express the annexin A2 heterotetramer on the cell surface as shown by flow cytometry, fluorescence microscopy, and coimmunoprecipitation of biotinylated cell surface proteins. Binding of plasmin to annexin A2 and S100A10 on monocytes was verified by biotin transfer from plasmin labeled with a trifunctional cross-linker. Antibodies directed against annexin A2 or S100A10 inhibited the chemotaxis elicited by plasmin, but not that induced by fMLP. Further, down-regulation of annexin A2 or S100A10 in monocytes by antisense oligodeoxynucleotides impaired the chemotactic response to plasmin, but not that to fMLP. Antisense oligodeoxynucleotides similarly decreased the TNF-α release by plasmin-stimulated, but not by LPS-stimulated, monocytes. At the molecular level, stimulation with plasmin, but not with catalytically inactivated plasmin, induced cleavage of annexin A2 and dissociation of the heterotetramer complex. Substitution of lysine to alanine in position 27 abolished the cleavage of recombinant annexin A2 in vitro. Together, these data identify the annexin A2 heterotetramer as a signaling receptor activated by plasmin via proteolysis.


Author(s):  
M.A. Tyumentseva ◽  
◽  
A.I. Tyumentsev ◽  
V.G. Akimkin ◽  
◽  
...  

For the effective functioning of supervisory and health monitoring services, it is necessary to introduce modern molecular technologies into their practice. Therefore, the task of developing new effective methods for detecting pathogen, for example HIV, based on CRISPR/CAS genome editing systems, remains urgent. In the present work, guide RNAs and specific oligonucleotides were developed for preliminary amplification of highly conserved regions of the HIV-1 genome. The developed guide RNAs make it possible to detect single copies of HIV-1 proviral DNA in vitro as part of CRISPR/CAS ribonucleoprotein complexes in biological samples after preliminary amplification.


2011 ◽  
Vol 31 (3) ◽  
pp. 262-265
Author(s):  
Xiao-lin QIN ◽  
Chao-qi LIU ◽  
Dong-ming REN ◽  
Yong-qin ZHOU
Keyword(s):  

2011 ◽  
Vol 8 (7) ◽  
pp. 602-605
Author(s):  
Ning Huang ◽  
Qin Wang ◽  
Liu-Meng Yang ◽  
Hui Xu ◽  
Yong-Tang Zheng

1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


2005 ◽  
Vol 32 (4) ◽  
pp. 294-299 ◽  
Author(s):  
Dieter Hoffmann ◽  
Bernd Buchberger ◽  
Cordula Nemetz

Author(s):  
Elahe Akbari ◽  
Kimia Kardani ◽  
Ali Namvar ◽  
Soheila Ajdary ◽  
Esmat Mirabzadeh Ardakani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document