scholarly journals Molecular and biological characterization of Chilli leaf curl virus and associated Tomato leaf curl betasatellite infecting tobacco in Oman

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Muhammad Shafiq Shahid ◽  
Muhammad Shafiq ◽  
Amir Raza ◽  
Abdullah M. Al-Sadi ◽  
Rob W. Briddon

Abstract Background In Oman tobacco (Nicotiana tabacum; family Solanaceae) is a minor crop, which is produced only for local consumption. In 2015, tobacco plants exhibiting severe downward leaf curling, leaf thickening, vein swelling, yellowing and stunting were identified in fields of tobacco in Suhar Al-Batina region, Oman. These symptoms are suggestive of begomovirus (genus Begomovirus, family Geminiviridae) infection. Methods Circular DNA molecules were amplified from total DNA extracted from tobacco plants by rolling circle amplification (RCA). Viral genomes were cloned from RCA products by restriction digestion and betasatellites were cloned by PCR amplification from RCA product, using universal primers. The sequences of full-length clones were obtained by Sanger sequencing and primer walking. Constructs for the infectivity of virus and betasatellite were produced and introduced into plants by Agrobacterium-mediated inoculation. Results The full-length sequences of 3 begomovirus and 3 betasatellite clones, isolated from 3 plants, were obtained. Analysis of the full-length sequences determined showed the virus to be a variant of Chilli leaf curl virus (ChiLCV) and the betasatellite to be a variant of Tomato leaf curl betasatellite (ToLCB). Both the virus and the betasatellite isolated from tobacco show the greatest levels of sequence identity to isolates of ChiLCV and ToLCB identified in other hosts in Oman. Additionally clones of ChiLCV and ToLCB were shown, by Agrobacterium-mediated inoculation, to be infectious to 3 Nicotiana species, including N. tabacum. In N. benthamiana the betasatellite was shown to change the upward leaf rolling symptoms to a severe downward leaf curl, as is typical for many monopartite begomoviruses with betasatellites. Conclusions The leaf curl disease of tobacco in Oman was shown to be caused by ChiLCV and ToLCB. This is the first identification of ChiLCV with ToLCB infecting tobacco. The study shows that, despite the low diversity of begomoviruses and betasatellites in Oman, the extant viruses/betasatellites are able to fill the niches that present themselves.

2019 ◽  
Vol 41 (2) ◽  
pp. 291-295 ◽  
Author(s):  
Muhammad Shafiq Shahid ◽  
Amir Raza ◽  
Abdullah M. Al-Sadi ◽  
Rob W. Briddon

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. S. Shahid ◽  
M. Shafiq ◽  
M. Ilyas ◽  
A. Raza ◽  
M. N. Al-Sadrani ◽  
...  

Abstract Next generation sequencing (NGS) of DNAs amplified by rolling circle amplification from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identified a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identified infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confirmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efficiency. This is the first identification of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This finding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material. The results here may suggest that begomoviruses which do not commonly infect tomato, such as MYMIV, could be spread as a passenger of TYLCV in tomato.


Author(s):  
C. Channakeshava. M.S. Patil. B. Gurupad ◽  
N.B. Moger

Background: Leaf curl or yellowing symptoms, typical of those caused by begomovirus infection, are commonly observed in capsicum (bell pepper) plants in polyhouses. Three capsicum samples with leaf curl and yellowing symptoms were collected from polyhouse at Hi-tech Horticulture, University of Agricultural Sciences, Dharwad, Karnataka, India, during 2017-2018. Methods: Total nucleic acid was isolated from symptomatic and non-symptomatic samples by following CTAB (Cetyl trimethyl ammonium bromide) method and PCR amplified using degenerate and coat protein gene primers of chilli and tomato leaf curl virus. The virus was confirmed by gel electrophoresis with 0.8 per cent agarose. Amplified PCR product was eluted and sent to sequencing (Chromous biotech Pvt. Ltd., Bengaluru). Result: The primer pair could amplify only Chilli leaf curl virus at ~500 bp but not Tomato leaf curl virus. Sequence homology of ChiLCV isolate form Dharwad matched with ChiLCV-Papaya-New Delhi (HM14036), ChiLCV-Chilli-Jodhpu (HM007104) and ChiLCV-Chilli-Noida (HM007114) respectively. The present study results showed that Chilli leaf curl virus is associated with the leaf curl and yellowing symptoms on capsicum under protected cultivation in Dharwad, Karnataka, India.


Plant Disease ◽  
2013 ◽  
Vol 97 (11) ◽  
pp. 1396-1402 ◽  
Author(s):  
A. J. Khan ◽  
S. Akhtar ◽  
A. K. Singh ◽  
R. W. Briddon

Tomato leaf curl disease (ToLCD) is a significant constraint for tomato production in the Sultanate of Oman. The disease in the north of the country has previously been shown to be caused by the monopartite begomoviruses (family Geminiviridae) Tomato yellow leaf curl virus and Tomato leaf curl Oman virus. Many tomato plants infected with these two viruses were also found to harbor a symptom enhancing betasatellite. Here an analysis of a virus isolated from tomato exhibiting ToLCD symptoms originating from south and central Oman is reported. Three clones of a monopartite begomovirus were obtained. One of the clones was shown to be infectious to tomato and Nicotiana benthamiana and to induce symptoms typical of ToLCD. Analysis of the cloned sequences show them to correspond to isolates of Tomato leaf curl Sudan virus (ToLCSDV), a virus that occurs in Sudan and Yemen. However, the sequences showed less than 93% nucleotide sequence identity to previously characterized ToLCSDV isolates, indicating that the viruses represent a distinct strain of the species, for which we propose the name “Oman” strain (ToLCSDV-OM). Closer analysis of the sequences showed them to differ from their closest relative, the “Tobacco” strain of ToLCSDV originating from Yemen, in three regions of the genome. This suggests that the divergence of the “Oman” and “Tobacco” strains has occurred due to recombination. Surprisingly, ToLCSDV-OM was not found to be associated with a betasatellite, even though the isolates of the other ToLCSDV strains have been shown to be. The significance of these findings and the possible reasons for the distinct geographic distributions of the tomato-infecting begomoviruses within Oman are discussed.


2019 ◽  
Vol 48 (1) ◽  
pp. 153-161
Author(s):  
Mohammad Nurul Islam ◽  
Aneesa Ansari ◽  
RH Sarker

Tomato leaf curl virus (ToLCV) has appeared as a potential threat to the tomato production in the world. ToLCV, a member of the family Geminiviridae may contain either bipartite or monopartite genome. The genetic nature of a monopartite ToLCV isolate characterized from the tomato leaf curl diseased samples of Jamalpur district, Bangladesh (ToLCV-JB) has been reported. The products of rolling circle amplification (RCA) were digested, cloned and sequenced. Sequence analysis revealed the features of begomovirus genome organization in the ToLCV-JB isolate, containing six open reading frames. BLAST analysis showed 100% sequence similarity with tomato leaf curl Patna virus (EU862323.1) and more than 80% similarity with other reported monopartite begomoviruses. Hence, the virus isolate was registered as Tomato leaf Curl Patna virus-[Bangladesh:Jamalpur:2014] isolate ToLCV-JB (Genebank Accession: KU933675.1) according to the suggestion of NCBI. Recombination analysis also did not show any genetic exchange between ToLCV-JB and ToLCV-Patna virus. Moreover, they belong to the same cluster as observed in phylogenetic analysis. The present work suggests the possibility of cross-border spread of ToLCV-Patna viruses without mutation and this could pose a threat to tomato production in Bangladesh as well as in the Asian continent.


2009 ◽  
Vol 53 (2) ◽  
pp. 99-104 ◽  
Author(s):  
H. Tamarzizt ◽  
S. Chouchane ◽  
R. Lengliz ◽  
D. Maxwell ◽  
M. Marrakchi ◽  
...  

2002 ◽  
Vol 147 (2) ◽  
pp. 255-272 ◽  
Author(s):  
N. Kirthi ◽  
S. P. Maiya ◽  
M. R. N. Murthy ◽  
H. S. Savithri

Plant Disease ◽  
2003 ◽  
Vol 87 (5) ◽  
pp. 598-598 ◽  
Author(s):  
S. L. Shih ◽  
W. S. Tsai ◽  
S. K. Green ◽  
P. M. Hanson ◽  
G. B. Valand ◽  
...  

The Asian Vegetable Research and Development Center's (AVRDC) tomato breeding lines derived from Lycopersicon hirsutum f. glabratum B 6013 × L. esculentum H-24 and carrying the Ty-2 resistance gene located on chromosome 11 are tolerant to tomato leaf curl disease in Karnataka State, southern India (3), where several isolates of Tomato leaf curl Virus-Bangalore (GenBank Accession Nos. L11746, Z48182, and AF165098) and Tomato leaf curl virus-Karnataka (GenBank Accession No. U38239) are reported to infect tomatoes. The only area in south and southeast Asia where these AVRDC tomato breeding lines were found susceptible to begomovirus infection is Thailand, where several bipartite Tomato yellow leaf curl virus isolates (GenBank Accession Nos. X63015, X63016; AF141922, AF141897; and AF511529, AF511528) are reported to be prevalent. However, in field trials conducted in the fall of 1999 in Bodeli, Gujarat State, western India, the AVRDC breeding lines showed typical symptoms of begomovirus infection, such as leaf curling and vein clearing. The presence of a different tomato begomovirus was suspected. Viral DNA from a symptomatic plant from Bodeli was amplified by polymerase chain reaction (PCR) using the begomovirus-specific degenerate primer pair PAL1v1978/PAR1c715 (4) and the expected 1.4-kb PCR product was obtained. Based on the sequence of the 1.4-kb DNA product, specific primers were designed to complete the DNA-A sequence. The DNA-A of the virus associated with tomato leaf curl from Bodeli consists of 2,759 nucleotides (GenBank Accession No. AF413671) and contains six open reading frames (ORFs V1, V2, C1, C2, C3, and C4). The DNA-A sequence of the Bodeli isolate had highest sequence identities of 98 and 98.3%, respectively, with viruses causing tomato leaf curl from Varanasi, Uttar Pradesh State, northern India (GenBank Accession No. AF449999) collected in the fall of 1999 and Panchkhal, Nepal (GenBank Accession No. AY234383) collected in early 2000. There was no evidence for the presence of DNA-B in the Bodeli, Panchkhal, or Varanasi virus isolates using DNA-B specific primer pairs DNABLC1/DNABLV2 and DNABLC2/DNABLV2 (2). However, a 1.3-kb DNA-beta was detected in the Panchkhal and Varanasi isolates using the primer pair Beta01/Beta02 (1). Sequence comparisons with begomovirus sequences available in the GenBank database showed that these three virus isolates and GenBank Accession No. AY190290 collected in 2001 from Varanasi shared more than 97% sequence identity with each other and should be considered closely related strains of the same virus. These four virus isolates belong to a new distinct tomato geminivirus species because their sequences share less than 88% sequence identities with the next most closely related virus, Tomato leaf curl virus-Karnataka (GenBank Accession No. U38239). This new tomato leaf curl virus is prevalent in western India, northern India, and Nepal. References: (1) R. W. Briddon et al. Mol. Biotechnol. 20:315, 2002. (2) S. K. Green et al. Plant Dis. 85:1286, 2001. (3) V. Muniyappa et al. HortScience 37:603, 2002. (4) M. R. Rojas et al. Plant Dis. 77:340, 1993.


Sign in / Sign up

Export Citation Format

Share Document