scholarly journals Cotton stubble detection based on wavelet decomposition and texture features

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yukun Yang ◽  
Jing Nie ◽  
Za Kan ◽  
Shuo Yang ◽  
Hangxing Zhao ◽  
...  

Abstract Background At present, the residual film pollution in cotton fields is crucial. The commonly used recycling method is the manual-driven recycling machine, which is heavy and time-consuming. The development of a visual navigation system for the recovery of residual film is conducive, in order to improve the work efficiency. The key technology in the visual navigation system is the cotton stubble detection. A successful cotton stubble detection can ensure the stability and reliability of the visual navigation system. Methods Firstly, it extracts the three types of texture features of GLCM, GLRLM and LBP, from the three types of images of stubbles, residual films and broken leaves between rows. It then builds three classifiers: Random Forest, Back Propagation Neural Network and Support Vector Machine in order to classify the sample images. Finally, the possibility of improving the classification accuracy using the texture features extracted from the wavelet decomposition coefficients, is discussed. Results The experiment proves that the GLCM texture feature of the original image has the best performance under the Back Propagation Neural Network classifier. As for the different wavelet bases, the vertical coefficient texture feature of coif3 wavelet decomposition, combined with the texture feature of the original image, is the feature having the best classification effect. Compared with the original image texture features, the classification accuracy is increased by 3.8%, the sensitivity is increased by 4.8%, and the specificity is increased by 1.2%. Conclusions The algorithm can complete the task of stubble detection in different locations, different periods and abnormal driving conditions, which shows that the wavelet coefficient texture feature combined with the original image texture feature is a useful fusion feature for detecting stubble and can provide a reference for different crop stubble detection.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ying Wu ◽  
Jikun Liu

AbstractWith the rapid development of gymnastics technology, novel movements are also emerging. Due to the emergence of various complicated new movements, higher requirements are put forward for college gymnastics teaching. Therefore, it is necessary to combine the multimedia simulation technology to construct the human body rigid model and combine the image texture features to display the simulation image in texture form. In the study, GeBOD morphological database modeling was used to provide the data needed for the modeling of the whole-body human body of the joint and used for dynamics simulation. Simultaneously, in order to analyze and summarize the technical essentials of the innovative action, this experiment compared and analyzed the hem stage of the cross-headstand movement of the subject and the hem stage of the 180° movement. Research shows that the method proposed in this paper has certain practical effects.


2018 ◽  
Vol 8 (9) ◽  
pp. 1632 ◽  
Author(s):  
Zahra Rezaei ◽  
Ali Selamat ◽  
Arash Taki ◽  
Mohd Mohd Rahim ◽  
Mohammed Abdul Kadir ◽  
...  

Atherosclerotic plaque rupture is the most common mechanism responsible for a majority of sudden coronary deaths. The precursor lesion of plaque rupture is thought to be a thin cap fibroatheroma (TCFA), or “vulnerable plaque”. Virtual Histology-Intravascular Ultrasound (VH-IVUS) images are clinically available for visualising colour-coded coronary artery tissue. However, it has limitations in terms of providing clinically relevant information for identifying vulnerable plaque. The aim of this research is to improve the identification of TCFA using VH-IVUS images. To more accurately segment VH-IVUS images, a semi-supervised model is developed by means of hybrid K-means with Particle Swarm Optimisation (PSO) and a minimum Euclidean distance algorithm (KMPSO-mED). Another novelty of the proposed method is fusion of different geometric and informative texture features to capture the varying heterogeneity of plaque components and compute a discriminative index for TCFA plaque, while the existing research on TCFA detection has only focused on the geometric features. Three commonly used statistical texture features are extracted from VH-IVUS images: Local Binary Patterns (LBP), Grey Level Co-occurrence Matrix (GLCM), and Modified Run Length (MRL). Geometric and texture features are concatenated in order to generate complex descriptors. Finally, Back Propagation Neural Network (BPNN), kNN (K-Nearest Neighbour), and Support Vector Machine (SVM) classifiers are applied to select the best classifier for classifying plaque into TCFA and Non-TCFA. The present study proposes a fast and accurate computer-aided method for plaque type classification. The proposed method is applied to 588 VH-IVUS images obtained from 10 patients. The results prove the superiority of the proposed method, with accuracy rates of 98.61% for TCFA plaque.


2012 ◽  
Vol 433-440 ◽  
pp. 3175-3180
Author(s):  
Hong Mei Wang ◽  
Ming Lu Zhang ◽  
Guang Zhu Meng

When global positioning system (GPS) signal outages, the integrated navigation accuracy of GPS and strap-down inertial navigation system (SINS) will decline with time, and even navigation system cannot work. To avoid this, a new design is introduced. When GPS works normally, square root filter estimates the errors of position, velocity and attitude and compensates the outputs of SINS. When GPS is out of order, back propagation neural network (BPNN) will take the place of GPS to calculate the error parameters, thus the accuracy of navigation will enhance. And in this paper, the unit of fault detection is added to detect whether GPS signal outages or not. The simulation results show the effectiveness of this method


2011 ◽  
Vol 130-134 ◽  
pp. 381-384
Author(s):  
Ya Biao Li ◽  
Bao Guang Wang ◽  
Wen Wen Li

A method for analyzing the textural features of image is put forward by using the wavelet decomposition. That is used to measure color difference of ceramic tiles on-line. A linear array color CCD camera is used to grab the image of ceramic tiles, and then the image is pretreated. Two level wavelet decomposition is used on the ceramic tile image, and the energy feature of each sub-graph is extracted. The energy feature will be used as a feature matrix,and it can be carried out the classfication according to minimum distance classifier. It can reflect spatial relationship of color more effectively, when contrast with the color histogram, which is used as a traditional method. Experiments show that it is effective using wavelet analysis on image processing,and the sort results are approximately in accordance with the artificial detection.


2020 ◽  
Vol 10 (4) ◽  
pp. 5986-5991
Author(s):  
A. N. Saeed

Artificial Intelligence (AI) based Machine Learning (ML) is gaining more attention from researchers. In ophthalmology, ML has been applied to fundus photographs, achieving robust classification performance in the detection of diseases such as diabetic retinopathy, retinopathy of prematurity, etc. The detection and extraction of blood vessels in the retina is an essential part of various diagnosing problems associated with eyes, such as diabetic retinopathy. This paper proposes a novel machine learning approach to segment the retinal blood vessels from eye fundus images using a combination of color features, texture features, and Back Propagation Neural Networks (BPNN). The proposed method comprises of two steps, namely the color texture feature extraction and training the BPNN to get the segmented retinal nerves. Magenta color and correlation-texture features are given as input to the BPNN. The system was trained and tested in retinal fundus images taken from two distinct databases. The average sensitivity, specificity, and accuracy obtained for the segmentation of retinal blood vessels were 0.470%, 0.914%, and 0.903% respectively. Results obtained reveal that the proposed methodology is excellent in automated segmentation retinal nerves. The proposed segmentation methodology was able to obtain comparable accuracy with other methods.


Author(s):  
E. M. SRINIVASAN ◽  
K. RAMAR ◽  
A. SURULIANDI

Texture analysis plays a vital role in image processing. The prospect of texture based image analysis depends on the texture features and the texture model. This paper presents a new texture feature extraction method 'Fuzzy Local Texture Patterns (FLTP)' and 'Fuzzy Pattern Spectrum (FPS)', suitable for texture analysis. The local image texture is described by FLTP and the global image texture is described by FPS. The proposed method is tested with texture classification, texture segmentation and texture edge detection. The results show that the proposed method provides a very good and robust performance for texture analysis.


2021 ◽  
Vol 13 (2) ◽  
pp. 40-62
Author(s):  
Binay Kumar Pandey ◽  
Digvijay Pandey ◽  
Subodh Wairya ◽  
Gaurav Agarwal

A potential to extract detailed textual image texture features is a key characteristic of the suggested approach, instead of using a single spatial texture feature. For the generation of MCs, four textured characteristics (including horizontal and vertical) are assumed in this paper that are content, coarseness, contrast, and directionality. The morphological parts of a clandestine text-based image were further segmented and then usually inserted into the least significant bit in cover pixels utilising spatial steganography. This same reverse process for steganography and MCA is conducted on the recipient side after transmission. The results demonstrate that the proposed method based on fusion of MCA and steganography provides a higher performance measure, for instance peak signal-to-noise ratio, SSIM, than the previous method.


Author(s):  
Shuo Wang ◽  
Tonghai Wu ◽  
Kunpeng Wang ◽  
Thompson Sarkodie-Gyan

Abstract Ferrograph analysis has been adopted over decades for determining the root causes of on-going wear faults. After decades of manual operation, this traditional technique is being driven by intelligent algorithms for automatic identification of wear debris. However, the accuracy and robustness of this algorithm remain marginalized when applied in industries due to various types and color blurry of particles. To address this issue, this paper introduces an automatic ferrograph analysis model with a segmentation method and a two-level classification strategy. In order to obtain wear particles from the color ferrograph image, an adaptive Otsu threshold is adopted in three channel images to solve the color blurry in particle segmentation. By grouping particle parameters into shape and morphology ones, a two-level identification strategy is proposed. The first one is to classify rubbing, cutting, and spherical particles, referring to the fuzzy approach degree of shape parameters. In the second level, the shape-close particles are classified with imperceptible textures and back propagation neural network (BPNN). These objective parameters are constructed by applying the principal component analysis into seven texture features and inputted into a BPNN-based model to classify fatigue and severe sliding particles. In order to train the BPNN, more than 100 ferrograph images are sampled together, whereby standard ferrograph analysis is performed on the particle identification. The performance of the identification exhibits an accuracy exceeding 90% for rubbing, cutting, and spherical particles, whereas about 80% accuracy has been registered for both severe sliding and fatigue particles.


Sign in / Sign up

Export Citation Format

Share Document