scholarly journals GSK3β-mediated tau hyperphosphorylation triggers diabetic retinal neurodegeneration by disrupting synaptic and mitochondrial functions

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Huazhang Zhu ◽  
Weizhen Zhang ◽  
Yingying Zhao ◽  
Xingsheng Shu ◽  
Wencong Wang ◽  
...  
EXPLORE ◽  
2022 ◽  
Author(s):  
Qian Feng ◽  
Lin Wang ◽  
Yu Chen ◽  
Mengmei Li ◽  
Jie Teng ◽  
...  

2021 ◽  
pp. bjophthalmol-2021-319853
Author(s):  
Sidra Zafar ◽  
Kristen A Staggers ◽  
Jie Gao ◽  
Yao Liu ◽  
Praveen J Patel ◽  
...  

Background/aimsMarkers to clinically evaluate structural changes from diabetic retinal neurodegeneration (DRN) have not yet been established. To study the potential role of peripapillary retinal nerve fibre layer (pRNFL) thickness as a marker for DRN, we evaluated the relationship between diabetes, as well as glycaemic control irrespective of diabetes status and pRNFL thickness.MethodsLeveraging data from a population-based cohort, we used general linear mixed models (GLMMs) with a random intercept for patient and eye to assess the association between pRNFL thickness (measured using GDx) and demographic, systemic and ocular parameters after adjusting for typical scan score. GLMMs were also used to determine: (1) the relationship between: (A) glycated haemoglobin (HbA1c) irrespective of diabetes diagnosis and pRNFL thickness, (B) diabetes and pRNFL thickness and (2) which quadrants of pRNFL may be affected in participants with diabetes and in relation to HbA1c.Results7076 participants were included. After controlling for covariates, inferior pRNFL thickness was 0.94 µm lower (95% CI −1.28 µm to −0.60 µm), superior pRNFL thickness was 0.83 µm lower (95% CI −1.17 µm to −0.49 µm) and temporal pRNFL thickness was 1.33 µm higher (95% CI 0.99 µm to 1.67 µm) per unit increase in HbA1c. Nasal pRNFL thickness was not significantly associated with HbA1c (p=0.23). Similar trends were noted when diabetes was used as the predictor.ConclusionSuperior and inferior pRNFL was significantly thinner among those with higher HbA1c levels and/or diabetes, representing areas of the pRNFL that may be most affected by diabetes.


2020 ◽  
Vol 10 (11) ◽  
pp. 805 ◽  
Author(s):  
Eduardo Penna ◽  
Amelia Pizzella ◽  
Fabiano Cimmino ◽  
Giovanna Trinchese ◽  
Gina Cavaliere ◽  
...  

Neurodevelopmental disorders (NDDs) include diverse neuropathologies characterized by abnormal brain development leading to impaired cognition, communication and social skills. A common feature of NDDs is defective synaptic plasticity, but the underlying molecular mechanisms are only partially known. Several studies have indicated that people’s lifestyles such as diet pattern and physical exercise have significant influence on synaptic plasticity of the brain. Indeed, it has been reported that a high-fat diet (HFD, with 30–50% fat content), which leads to systemic low-grade inflammation, has also a detrimental effect on synaptic efficiency. Interestingly, metabolic alterations associated with obesity in pregnant woman may represent a risk factor for NDDs in the offspring. In this review, we have discussed the potential molecular mechanisms linking the HFD-induced metabolic dysfunctions to altered synaptic plasticity underlying NDDs, with a special emphasis on the roles played by synaptic protein synthesis and mitochondrial functions.


2016 ◽  
Vol 42 (4) ◽  
pp. 295 ◽  
Author(s):  
P. Mordel ◽  
M. Nowoczyn ◽  
M. Joubert ◽  
L. Coulbault ◽  
S. Allouche

Sign in / Sign up

Export Citation Format

Share Document