scholarly journals Surface modification of decellularized bovine carotid arteries with human vascular cells significantly reduces their thrombogenicity

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Eriselda Keshi ◽  
Peter Tang ◽  
Marie Weinhart ◽  
Hannah Everwien ◽  
Simon Moosburner ◽  
...  

Abstract Background Since autologous veins are unavailable when needed in more than 20% of cases in vascular surgery, the production of personalized biological vascular grafts for implantation has become crucial. Surface modification of decellularized xenogeneic grafts with vascular cells to achieve physiological luminal coverage and eventually thromboresistance is an important prerequisite for implantation. However, ex vivo thrombogenicity testing remains a neglected area in the field of tissue engineering of vascular grafts due to a multifold of reasons. Methods After seeding decellularized bovine carotid arteries with human endothelial progenitor cells and umbilical cord-derived mesenchymal stem cells, luminal endothelial cell coverage (LECC) was correlated with glucose and lactate levels on the cell supernatant. Then a closed loop whole blood perfusion system was designed. Recellularized grafts with a LECC > 50% and decellularized vascular grafts were perfused with human whole blood for 2 h. Hemolysis and complete blood count evaluation was performed on an hourly basis, followed by histological and immunohistochemical analysis. Results While whole blood perfusion of decellularized grafts significantly reduced platelet counts, platelet depletion from blood resulting from binding to re-endothelialized grafts was insignificant (p = 0.7284). Moreover, macroscopic evaluation revealed thrombus formation only in the lumen of unseeded grafts and histological characterization revealed lack of CD41 positive platelets in recellularized grafts, thus confirming their thromboresistance. Conclusion In the present study we were able to demonstrate the effect of surface modification of vascular grafts in their thromboresistance in an ex vivo whole blood perfusion system. To our knowledge, this is the first study to expose engineered vascular grafts to human whole blood, recirculating at high flow rates, immediately after seeding.

2008 ◽  
Vol 1 ◽  
pp. CMBD.S507 ◽  
Author(s):  
Masato Mitsuhashi ◽  
Katsuya Endo ◽  
Kazuhiko Obara ◽  
Hiroshi Izutsu ◽  
Taishi Ishida ◽  
...  

Apoptosis was induced in heparinized human whole blood by 3 different ways (radiation, bleomycin, or etoposide), and various mRNA were quantified using the method we reported (Clin. Chem. 2006; 52:634-642). We found that cyclin-dependent kinase inhibitor 1A (p21) and p53 upregulated modulator of apoptosis (PUMA) were the most sensitive and universal mRNA markers of apoptosis in leukocytes. In order to define positive and negative responses, a synthetic RNA was spiked into the lysis buffer and the fold increase was calculated. As a result, 837/880 (95.1%) of data points stayed between 0.75 and 1.5 fold increase, and 874/880 (99.3%) were within 0.5-2.0 fold increase. When blood samples from 40 healthy adults were stimulated with 22 different drugs, more than 75% of the samples responded to bleomycin (1 μM), idarubicin (2 μM), vincristine (1 μM), daunorubicin (2 μM), cytarabine (10 μM), to induce p21 and/or PUMA mRNA, and approximately 25% showed no induction. Significant correlation was found between p21 and PUMA mRNA responses, and between daunorubicin and cytarabine, idarubicin, and vincristine for both p21 and PUMA. The quantification of drug-induced mRNA in whole blood will be considered as ex vivo, and is a suitable platform for biomarker screening as well as a model system for drug sensitivity tests in future.


2020 ◽  
pp. JPET-AR-2020-000307
Author(s):  
Xiaoping Xu ◽  
Navin Goyal ◽  
Melissa H Costell ◽  
Theresa Roethke ◽  
Christian H James ◽  
...  

2009 ◽  
Vol 33 (6) ◽  
pp. 583-586 ◽  
Author(s):  
Friederike Traunmüller ◽  
Christiane Thallinger ◽  
Johann Hausdorfer ◽  
Christopher Lambers ◽  
Stanislava Tzaneva ◽  
...  

2008 ◽  
Vol 25 (5) ◽  
pp. 1116-1124 ◽  
Author(s):  
Masato Mitsuhashi ◽  
Mieko Ogura ◽  
Katsuya Endo ◽  
Kazuhiko Obara ◽  
Hiroshi Izutsu ◽  
...  

2008 ◽  
Vol 43 (4) ◽  
pp. 400-407 ◽  
Author(s):  
C. Bodet ◽  
V. D. La ◽  
F. Epifano ◽  
D. Grenier

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mariana Torrente Gonçalves ◽  
Carla Cristina Squaiella-Baptistão ◽  
Giselle Pidde ◽  
Priscila Hess Lopes ◽  
Iseu da Silva Nunes ◽  
...  

P-MAPA is a complex compound, derived from Aspergillus oryzae cultures, that has shown immunomodulatory properties in infection and cancer animal models. Despite promising results in these models, the mechanisms of cellular activation by P-MAPA, suggested to be Toll-like receptor- (TLR-) dependent, and its effect on human immune cells, remain unclear. Using an ex vivo model of human whole blood, the effects of P-MAPA on complement system activation, production of cytokines, and the expression of complement receptors (CD11b, C5aR, and C3aR), TLR2, TLR4, and the coreceptor CD14 were analyzed in neutrophils and monocytes. P-MAPA induced complement activation in human blood, detected by increased levels of C3a, C5a, and SC5b-9 in plasma. As a consequence, CD11b expression increased and C5aR decreased upon activation, while C3aR expression remained unchanged in leukocytes. TLR2 and TLR4 expressions were not modulated by P-MAPA treatment on neutrophils, but TLR4 expression was reduced in monocytes, while CD14 expression increased in both cell types. P-MAPA also induced the production of TNF-α, IL-8, and IL-12 and oxidative burst, measured by peroxynitrite levels, in human leukocytes. Complement inhibition with compstatin showed that P-MAPA-induced complement activation drives modulation of C5aR, but not of CD11b, suggesting that P-MAPA acts through both complement-dependent and complement-independent mechanisms. Compstatin also significantly reduced the peroxynitrite generation. Altogether, our results show that P-MAPA induced proinflammatory response in human leukocytes, which is partially mediated by complement activation. Our data contribute to elucidate the complement-dependent and complement-independent mechanisms of P-MAPA, which ultimately result in immune cell activation and in its immunomodulatory properties in infection and cancer animal models.


2000 ◽  
Vol 44 (5) ◽  
pp. 803-807 ◽  
Author(s):  
Atle Bj�rnerud ◽  
Karen Briley-S�b� ◽  
Lars O. Johansson ◽  
Kenneth E. Kellar

2021 ◽  
Author(s):  
Alexandre Mansour ◽  
Benoit Decouture ◽  
Mikaël Roussel ◽  
Charles Lefevre ◽  
Lucie Skreko ◽  
...  

Background The SAME device (i-SEP, France) is an innovative filtration-based autotransfusion device able to salvage and wash both red blood cells and platelets. This study evaluated the device performances using human whole blood with the hypothesis that the device will be able to salvage platelets while achieving a erythrocyte yield of 80% and removal ratios of 90% for heparin and 80% for major plasma proteins without inducing signification activation of salvaged cells. Methods Thirty healthy human whole blood units (median volume, 478 ml) were diluted, heparinized, and processed by the device in two consecutive treatment cycles. Samples from the collection reservoir and the concentrated blood were analyzed. Complete blood count was performed to measure blood cell recovery rates. Flow cytometry evaluated the activation state and function of platelets and leukocytes. Heparin and plasma proteins were measured to assess washing performance. Results The global erythrocyte yield was 88.1% (84.1 to 91.1%; median [25th to 75th]) with posttreatment hematocrits of 48.9% (44.8 to 51.4%) and 51.4% (48.4 to 53.2%) for the first and second cycles, respectively. Ektacytometry did not show evidence of erythrocyte alteration. Platelet recovery was 36.8% (26.3 to 43.4%), with posttreatment counts of 88 × 109/l (73 to 101 × 109/l) and 115 × 109/l (95 to 135 × 109/l) for the first and second cycles, respectively. Recovered platelets showed a low basal P-selectin expression at 10.8% (8.1 to 15.2%) and a strong response to thrombin-activating peptide. Leukocyte yield was 93.0% (90.1 to 95.7%) with no activation or cell death. Global removal ratios were 98.3% (97.8 to 98.9%), 98.2% (96.9 to 98.8%), and 88.3% (86.6 to 90.7%) for heparin, albumin, and fibrinogen, respectively. The processing times were 4.4 min (4.2 to 4.6 min) and 4.4 min (4.2 to 4.7 min) for the first and second cycles, respectively. Conclusions This study demonstrated the performance of the SAME device. Platelets and red blood cells were salvaged without significant impact on cell integrity and function. In the meantime, leukocytes were not activated, and the washing quality of the device prevented reinfusion of high concentrations of heparin and plasma proteins. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Sign in / Sign up

Export Citation Format

Share Document