scholarly journals Hyperpolarized [1-13C] pyruvate MR spectroscopy detect altered glycolysis in the brain of a cognitively impaired mouse model fed high-fat diet

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Young-Suk Choi ◽  
Somang Kang ◽  
Sang-Yoon Ko ◽  
Saeram Lee ◽  
Jae Young Kim ◽  
...  
Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1353
Author(s):  
Ji Hyun Kim ◽  
Sanghyun Lee ◽  
Eun Ju Cho

Obesity increases risk of Alzheimer’s Disease (AD). A high fat diet (HFD) can lead to amyloidosis and amyloid beta (Aβ) accumulation, which are hallmarks of AD. In this study, protective effects of the ethyl acetate fraction of Acer okamotoanum (EAO) and isoquercitrin were evaluated on obesity and amyloidosis in the HFD- and Aβ-induced mouse model. To induce obesity and AD by HFD and Aβ, mice were provided with HFD for 10 weeks and were intracerebroventricularly injected with Aβ25–35. For four weeks, 100 and 10 mg/kg/day of EAO and isoquercitrin, respectively, were administered orally. Administration of EAO and isoquercitrin significantly decreased body weight in HFD and Aβ-injected mice. Additionally, EAO- and isoquercitrin-administered groups attenuated abnormal adipokines release via a decrease in leptin and an increase in adiponectin levels compared with the control group. Furthermore, HFD and Aβ-injected mice had damaged liver tissues, but EAO- and isoquercitrin-administered groups attenuated liver damage. Moreover, administration of EAO and isoquercitrin groups down-regulated amyloidosis-related proteins in the brain such as β-secretase, presenilin (PS)-1 and PS-2 compared with HFD and Aβ-injected mice. This study indicated that EAO and isoquercitrin attenuated HFD and Aβ-induced obesity and amyloidosis, suggesting that they could be effective in preventing and treating both obesity and AD.


Author(s):  
Alejandra Freire Fernández-Regatillo ◽  
María L. de Ceballos ◽  
Jesús Argente ◽  
Sonia Díaz Pacheco ◽  
Clara González Martínez

2015 ◽  
Vol 44 (8) ◽  
pp. 1105-1113
Author(s):  
Hyelin Jeon ◽  
Sungmin Kwak ◽  
Su-Jin Oh ◽  
Hyun Soo Nam ◽  
Doo Won Han ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3746
Author(s):  
Ilaria Zuliani ◽  
Chiara Lanzillotta ◽  
Antonella Tramutola ◽  
Eugenio Barone ◽  
Marzia Perluigi ◽  
...  

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer’s disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.


Sign in / Sign up

Export Citation Format

Share Document