scholarly journals A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia

Author(s):  
Yiran Chen ◽  
Xiaoling Xie ◽  
Anqin Wu ◽  
Lei Wang ◽  
Yuxing Hu ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


Tumor Biology ◽  
2020 ◽  
Vol 42 (9) ◽  
pp. 101042832095473
Author(s):  
Sherif Suleiman ◽  
Riccardo Di Fiore ◽  
Analisse Cassar ◽  
Melissa Marie Formosa ◽  
Pierre Schembri-Wismayer ◽  
...  

Acute myeloid leukemia is the most common form of acute leukemia in adults, constituting about 80% of cases. Although remarkable progress has been made in the therapeutic scenario for patients with acute myeloid leukemia, research and development of new and effective anticancer agents to improve patient outcome and minimize toxicity is needed. In this study, the antitumor activity of axolotl (AXO) Ambystoma mexicanum crude extract was assessed in vitro on the human acute myeloid leukemia HL-60 cell line. The anticancer activity was evaluated in terms of ability to influence proliferative activity, cell viability, cell cycle arrest, and differentiation. Moreover, gene expression analysis was performed to evaluate the genes involved in the regulation of these processes. The AXO crude extract exhibited antiproliferative but not cytotoxic activities on HL-60 cells, with cell cycle arrest in the G0/G1 phase. Furthermore, the AXO-treated HL-60 cells showed an increase in both the percentage of nitroblue tetrazolium positive cells and the expression of CD11b, whereas the proportion of CD14-positive cells did not change, suggesting that extract is able to induce differentiation toward the granulocytic lineage. Finally, the treatment with AXO extract caused upregulation of CEBPA, CEBPB, CEBPE, SPI1, CDKN1A, and CDKN2C, and downregulation of c-MYC. Our data clearly show the potential anticancer activity of Ambystoma mexicanum on HL-60 cells and suggest that it could help develop promising therapeutic agents for the treatment of acute myeloid leukemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1573-1573
Author(s):  
Rhys Gareth Morgan ◽  
Lorna Pearn ◽  
Kate Liddiard ◽  
Robert Hills ◽  
Alan Burnett ◽  
...  

Abstract Abstract 1573 Wnt proteins are important developmental regulators and are known to play a role in maintenance of hematopoietic stem cells (HSC). Wnt signaling has also been identified as one of the most frequently dysregulated processes associated with acute myeloid leukemia (AML), though the significance of this observation is as yet poorly understood. Here we investigate the role of two Wnt signaling proteins; β-catenin and γ-catenin and their respective roles in both normal human hematopoiesis and in AML. These proteins have dual and overlapping roles as transcriptional activators of Wnt target genes in the nucleus, and as structural components of the cytoskeleton. To determine the potential scope of influence of these proteins, we first examined their expression levels and subcellular location throughout normal human hematopoiesis using multi-parameter flow cytometric analysis and confocal microscopy. As expected β-catenin was strongly expressed in human cord blood derived HSC (212 MFI ±124, n=6) and at lower levels in differentiated subsets; surprisingly however β-catenin expression was maintained in granulocytic (1182 MFI±568) and monocytic cells (284 MFI±107). Nuclear localization was independent of cytoplasmic expression level, being strongly nuclear-localized in early progenitors and predominantly cytoplasmic in differentiated cells (58%±5 nuclear-localized in CD34+ cells vs 27%±1 in granulocytes, P=0.008). The expression pattern of γ-catenin was similar to β-catenin but showed a reciprocal pattern of subcellular localization, with levels of nuclear γ-catenin strongest in differentiated cells (10%±2 in CD34+ cells vs 44%±3 in monocytes P=0.0005). These data imply complementary roles for β and γ-catenin in normal hematopoiesis and show that nuclear localization of these proteins is regulated independently and irrespective of their expression level. In AML patients, β-catenin dysregulation has been previously reported; however, we also observed frequent overexpression of γ-catenin (over 5 fold in 25% of patients). This overexpression was associated with lower remission rates (OR 1.23 per log increase, P=0.03, CI 1.02–1.49) arising from resistant disease (OR 1.57 per log increase, P=0.003, CI 1.16–2.14) in a cohort of 243 AML patients adjusted for baseline diagnostic variables. In contrast to normal hematopoiesis, we found that nuclear localization of γ-catenin correlated with nuclear localization of β-catenin in AML (R=0.5, n=59) suggesting that the capacity to independently regulate the nuclear entry/retention of these catenins is disrupted in AML. To investigate this, we examined the effect of ectopic overexpression of γ-catenin in normal cord blood derived CD34+ cells and AML cell lines. Three-fold overexpression of γ-catenin failed to induce nuclear translocation of γ- or β-catenin in normal progenitors, which exhibited no major developmental defects. In contrast, in 3 of 4 AML cell lines, overexpression of γ-catenin strongly promoted its nuclear localization (9-16 fold) and was associated with a block in agonist-induced differentiation - a phenotype previously associated with β-catenin. In accord with this, we found that as in primary AML, nuclear translocation of γ-catenin in AML cell lines was associated with translocation of β-catenin (2-22 fold). In conclusion, we propose that in normal hematopoiesis, nuclear translocation of β- and γ-catenin is tightly and independently regulated for each catenin. In contrast, most AML cells lack this regulation resulting in correlated nuclear levels of β- and γ-catenin. In addition, we found while overexpression of γ-catenin has little consequence for normal cells; in malignant cells γ-catenin facilitates nuclear translocation of β-catenin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 509-509 ◽  
Author(s):  
Aruna Kode ◽  
Sanil Manavalan ◽  
Ioanna Mossialou ◽  
Govind Bhagat ◽  
Murty Vundavalli ◽  
...  

Abstract Abstract 509 Osteoblasts, the bone forming cells, are implicated in the fate of healthy and malignant stem cells. They affect self-renewal and expansion of hematopoietic stem cells (HSCs) and homing of tumor cells into the bone marrow. Here we show that constitutive activation of canonical Wnt signaling in osteoblast precursors disrupts hematopoiesis in mice by shifting the differentiation potential of HSC progenitors to the myeloid lineage which results in accumulation of granulocyte/monocyte progenitors and concomitant development of acute myeloid leukemia (AML). B-lymphopoiesis is also decreased. The AML phenotype is associated with clonal evolution at the cytogenetic level since clonal abnormalities could be detected in leukemic blasts from mice with constitutive activation of the canonical Wnt target β-catenin in osteoblast precursors (βcateninosb mice). Bone marrow transplantation experiments from βcateninosb mice to wild type lethally irradiated mice resulted in development of AML within 8 weeks following transplantation, demonstrating progression towards AML. At the molecular level, cell-specific gene inactivation mouse models demonstrate that β-catenin interacts with FoxO1 in osteoblasts to induce development of AML. Downstream signaling events that confer osteoblast signaling to normal HSCs and lead to their leukemogenic transformation will be presented. Importantly, malignancy-inducing osteoblasts, detected by nuclear accumulation of β-catenin in bone marrow biopsies, were identified in > 25% of patients with myelodysplasia (MDS), acute myeloid leukemia (AML) or AML arising from a prior MDS. Specifically, 15 out of 53 patients with MDS (n=17 patients), AML (n=20 patients), or MDS that had transformed to AML (n=16) chosen at random showed nuclear localization of β-catenin in osteoblasts. Of note, 12 of the 15 (80%) patients with nuclear localization of β-catenin in osteoblasts had abnormalities of chromosome 5 and/or 7, very common cytogenetic abnormalities in patients with MDS and AML. The same signaling pathways mediating AML development in βcateninosb mice were also found to be activated in osteoblasts and hematopoietic cells from the patients with nuclear accumulation of β-catenin in osteoblasts. These findings demonstrate that genetic alterations in osteoblast precursors (1) can induce AML in mice and (2) are associated with AML development in humans. They also provide a molecular basis for the leukemogenic transformation. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2012 ◽  
Vol 27 (2) ◽  
pp. 336-343 ◽  
Author(s):  
R G Morgan ◽  
L Pearn ◽  
K Liddiard ◽  
S L Pumford ◽  
A K Burnett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document