scholarly journals Mucin 17 inhibits the progression of human gastric cancer by limiting inflammatory responses through a MYH9-p53-RhoA regulatory feedback loop

Author(s):  
Bing Yang ◽  
Aiwen Wu ◽  
Yingqi Hu ◽  
Cuijian Tao ◽  
Ji Ming Wang ◽  
...  
2015 ◽  
Vol 1853 (2) ◽  
pp. 481-488 ◽  
Author(s):  
Yan Zhang ◽  
Wen-Long Shen ◽  
Ming-Lei Shi ◽  
Le-Zhi Zhang ◽  
Zhang Zhang ◽  
...  

Oncogenesis ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Linlin Tao ◽  
Haoyuan Yu ◽  
Rui Liang ◽  
Ru Jia ◽  
Jingjing Wang ◽  
...  

Abstract Rev-erbα is a nuclear receptor, which regulates circadian rhythm, inflammatory responses and lipid metabolism. We previously showed Rev-erbα reduction in human gastric cancer, which is associated with TMN stages and poor prognosis. We hypothesized that Rev-erbα modulates proliferation via glycolytic flux and the pentose phosphate pathway (PPP) in gastric cancer. Knockdown of Rev-erbα significantly increased proliferation as well as glycolytic flux and the PPP in human gastric cancer cells. These effects were reduced by a Rev-erbα agonist GSK4112 in a dose-dependent manner. Furthermore, Rev-erbα was recruited on the promoters of PFKFB3 and G6PD genes, thereby inhibiting their gene transcription. GSK4112 treatment reduced PFKFB3 and G6PD gene expression, which was not affected by BMAL1 knockdown. Pharmacological inhibition of glycolysis and the PPP using corresponding PFKFB3 and G6PD inhibitors attenuated Rev-erbα knockdown-induced proliferation in gastric cancer cells. GSK4112 treatment was not able to reduce proliferation in SGC-7901 overexpressing both PFKFB3 and G6PD genes. Both PFKFB3 and G6PD were overexpressed in patients with gastric cancer, and positively correlated with the TMN stages. The PPP and glycolysis were enhanced in gastric cancer tissues of patients with low expression of Rev-erbα compared to the patients with high expression of Rev-erbα. In conclusion, Rev-erbα reduction causes gastric cancer progression by augmenting the PPP and glycolysis.


Author(s):  
Dong Yuming ◽  
Yang Guanglin ◽  
Du Wei Dong ◽  
Xu Ai Liam

The activities and distributions of AKPase ,ACPase,G6Pase,TPPase and COase in human normal gastric mucosa and gastric cancer tissues were studied histochemically at light microscopic level. These enzymes are the marker enzymes of cell membrane lysosome endoplasmic reticulum, Golgi apparatus and mitochondrion objectively. On the basis of the research we set up a special ultrastructural cytochemical technique and first researched into gastric cancer domesticly. Ultrastructural cytochemistry is also called electron microscopic cytochemistry. This new technique possesses both the sensitivity of cytochemical reaction andi the high resolution of electron microscope. It is characterized by direct observation,exact localization and the combination morphology with function.The distributions of AKPase,ACPase,G6Pase,TPPase and COase in 14 cases of gastric cancer and 1 case of gastric Denign lesion were studied ultrastructurally. The results showed: 1. normal gastric epithelium had no AKPase reaction. The reaction of ACPase,G6Pase,TPPase and Coase were found in the corresponding organella, which were consistent with their function.


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


Sign in / Sign up

Export Citation Format

Share Document