scholarly journals MiR-149-3p promotes the cisplatin resistance and EMT in ovarian cancer through downregulating TIMP2 and CDKN1A

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jin Wang ◽  
Lingxia Liu

Abstract Background Ovarian cancer (OC), a kind of gynecological cancer, is characterized by high mortality rate, with microRNAs (miRNAs) playing essential roles in it. However, the clinical significance of miRNAs and their molecular mechanisms in OC are mostly unknown. Methods miR-149-3p expression was predicted through Gene Expression Omnibus (GEO) data in OC and confirmed by q-PCR in various OC cells and tissues from patients with different clinical characteristics. Moreover, its roles in terms of proliferation, migration and invasion were measured by CCK-8, colony formation, wound healing and transwell assays in OC cells including cisplatin-resistant and cisplatin-sensitive cells. And its effect on epithelial-mesenchymal transition was also assessed through detecting related protein expression. Additionally, its potential targets were verified by dual luciferase assay and Ago-RIP assay. Finally, its oncogenic functions were explored in vivo. Results In data from GSE79943, GSE131790, and TCGA, miR-149-3p was found to be highly expressed in OC tissues and associated with poor survival. In metastasis and chemoresistant tissues and cisplatin-resistant OC cells, its high expression was confirmed. In terms of tumorigenic effects, miR-149-3p knockdown in cisplatin-resistant OC cells inhibited its cisplatin resistance and other malignant phenotypes, while miR-149-3p overexpression in cisplatin-resistant OC cells led to contrary results. Mechanistically, miR-149-3p targeted 3’UTR of CDKN1A and TIMP2 to function as an oncogenic miRNA. Conclusion In brief, miR-149-3p promoted cisplatin resistance and EMT in OC by downregulating CDKN1A and TIMP2, which might provide a potential therapeutic target for OC treatment.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rong-Hang Hu ◽  
Zi-Teng Zhang ◽  
Hai-Xiang Wei ◽  
Lu Ning ◽  
Jiang-Shan Ai ◽  
...  

Abstract Background Growing evidence suggests that suppressor of tumorigenicity 7 antisense RNA 1 (ST7-AS1) is an oncogenic long noncoding RNA (lncRNA). However, little is known on its clinical significance, biological functions, or molecular mechanisms in lung adenocarcinoma (LUAD). Methods The expression of ST7-AS1 and miR-181b-5p were examined by qRT-PCR. The correlations between ST7-AS1 level and different clinicopathological features were analysed. In vitro, LUAD cells were examined for cell viability, migration and invasion by MTT, wound healing and Transwell assay, respectively. Epithelial-mesenchymal transition (EMT) biomarkers were detected by Western blot. The regulations between ST7-AS1, miR-181b-5p, and KPNA4 were examined by luciferase assay, RNA immunoprecipitation, RNA pulldown. Both gain- and loss-of-function strategies were used to assess the importance of different signalling molecules in malignant phenotypes of LUAD cells. The in vivo effect was analysed using the xenograft and the experimental metastasis mouse models. Results ST7-AS1 was upregulated in LUAD tissues or cell lines, correlated with tumours of positive lymph node metastasis or higher TNM stages, and associated with shorter overall survival of LUAD patients. ST7-AS1 essentially maintained the viability, migration, invasion, and EMT of LUAD cells. The oncogenic activities of ST7-AS1 were accomplished by sponging miR-181b-5p and releasing the suppression of the latter on KPNA4. In LUAD tissues, ST7-AS1 level positively correlated with that of KPNA4 and negatively with miR-181b-5p level. In vivo, targeting ST7-AS1 significantly inhibited xenograft growth and metastasis. Conclusions ST7-AS1, by regulating miR-181b-5p/KPNA4 axis, promotes the malignancy of LUAD cells. Targeting ST7-AS1 and KPNA4 or up-regulating miR-181b-5p, therefore, may benefit the treatment of LUAD.


2017 ◽  
Vol 43 (6) ◽  
pp. 2489-2504 ◽  
Author(s):  
Le Chen ◽  
Ying Yao ◽  
Lijuan Sun ◽  
Jiajia Zhou ◽  
Minmin Miao ◽  
...  

Background/Aims: Our study aims to investigate the role, effect and mechanisms of ESRP1 (epithelial splicing regulatory protein 1) in epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer (EOC). Methods: Microarray and immunohistochemical analysis of ESRP1 expression were performed in EOC cases. The correlations between ESRP1 expression and clinical factors on EOC were assessed. Lentivirus-mediated RNA interference and EGFP vector which contains ESRP1 gene were used to down-regulate and up-regulate ESRP1 expression in human EOC cell lines. Roles of ESRP1 in cell growth, migration and invasion of EOC cells were also measured by Cell Counting Kit-8 and Transwell systems in vitro and by a nude mice intraperitoneal transplantation model in vivo. Results: By the analysis of Gene Expression Omnibus (GEO) (p<0.05) and our own microarray data (p<0.001), ESRP1 expression in EOC was significantly different from normal ovarian tissue. It was abundant in the nuclei of cancer cells and in malignant lesions. However, it was weakly expressed or negative in both normal and benign lesions. High ESRP1 expression in EOC was associated with poor clinical outcomes. Decreased ESRP1 expression significantly increased cell migration and invasion both in vivo and in vitro. Snail strongly repressed ESRP1 transcription through binding to the ESRP1 promoter in EOC cells. Furthermore, ESRP1 regulated the expression of CD44s. Down-regulated ESRP1 resulted in an isoform switching from CD44v to CD44s, which modulated epithelial-mesenchymal transition (EMT) program in EOC. Up-regulatin of ESRP1 was detected in mesenchymal to epithelial transition (MET) in vivo. Conclusions: ESRP1 regulates CD44 alternative splicing during the EMT process which plays an important role in EOC carcinogenesis. In addition, ESRP1 is associated with disease prognosis in EOC.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1676
Author(s):  
Monserrat Olea-Flores ◽  
Juan C. Juárez-Cruz ◽  
Miriam D. Zuñiga-Eulogio ◽  
Erika Acosta ◽  
Eduardo García-Rodríguez ◽  
...  

Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial–mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wen-Xi Tan ◽  
Ge Sun ◽  
Meng-Yuan Shangguan ◽  
Zhi Gui ◽  
Yang Bao ◽  
...  

Abstract Ovarian Cancer (OC) is a highly lethal gynecological cancer which often progresses through acquired resistance against the administered therapy. Cisplatin is a common therapeutic for the treatment of OC patients and therefore it is critical to understand the mechanisms of resistance against this drug. We studied a paired cell line consisting of parental and cisplatin resistant (CR) derivative ES2 OC cells, and found a number of dysregulated lncRNAs, with CHRF being the most significantly upregulated lncRNA in CR ES2 cells. The findings corroborated in human patient samples and CHRF was significantly elevated in OC patients with resistant disease. CHRF was also found to be elevated in patients with liver metastasis. miR-10b was found to be mechanistically involved in CHRF mediated cisplatin resistance. It induced resistance in not only ES2 but also OVCAR and SKOV3 OC cells. Induction of epithelial-to-mesenchymal-transition (EMT) and activation of STAT3 signaling were determined to be the mechanisms underlying the CHRF-miR-10b axis-mediated cisplatin resistance. Down-regulation of CHRF reversed EMT, STAT3 activation and the resulting cisplatin resistance, which could be attenuated by miR-10b. The results were also validated in an in vivo cisplatin resistance model wherein CR cells were associated with increased tumor burden, CHRF downregulation associated with decreased tumor burden and miR-10b again attenuated the CHRF downregulation effects. Our results support a novel role of lncRNA CHRF in cisplatin resistance of OC and establish CHRF-miR-10b signaling as a putative therapeutic target for sensitizing resistant OC cells.


2022 ◽  
Vol 36 ◽  
pp. 205873842110586
Author(s):  
Yan Zhang ◽  
Min Zhou ◽  
Kun Li

Introduction MicroRNAs (miRs) exhibit the potential to act as therapeutic targets for the management of human cancers including ovarian cancer. The role of microRNA-30 (miR-30) via modulation of RAB32 expression has not been studied in ovarian cancer. Consistently, the present study was designed to characterize the molecular role of miR-30/RAB32 axis in human ovarian cancer. Methods Cell viability was determined by MTT assay. Expression analysis was carried out by qRT-PCR. Dual luciferase assay was used to confirm the interaction between miR-30 and RAB32. Scratch-heal and transwell chamber assays were used to monitor the cell migration and invasion. Western blotting and immunofluorescence assays were used to determine the protein expression. Results The results revealed significant ( p < 0.05) downregulation of miR-30 in human ovarian cancer cell lines. Overexpression of miR-30 in ovarian SK-OV-3 and A2780 cancer cells significantly ( p < 0.05) inhibited their proliferation. Besides, ovarian cancer cells overexpressing miR-30 showed significantly ( p < 0.05) lower migration and invasion. The miR-30 upregulation also altered the expression pattern of marker proteins of epithelial–mesenchymal transition in ovarian cancer cells. In silico analysis predicted RAB32 as the molecular target of miR-30 at post-transcriptional level. The silencing of RAB32 mimicked the tumor-suppressive effects of miR-30 overexpression in ovarian cancer cells. Nonetheless, overexpression of RAB32 could prevent the tumor-suppressive effects of miR-30 on SK-OV-3 and A2780 cancer cells. Conclusion Taken together, the results suggest the tumor-suppressive role of miR-30 and point towards the therapeutic utility of miR-30/RAB32 molecular axis in the management of ovarian cancer


2020 ◽  
Author(s):  
H Wang ◽  
E Chirshev ◽  
N Hojo ◽  
T Suzuki ◽  
A Bertucci ◽  
...  

AbstractWe aimed to determine the mechanism of epithelial-mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked let-7 repression and acquisition of stemness with the EMT factor, SNAI1. The mechanisms for the loss of let-7 in cancer cells are incompletely understood. In four carcinoma cell lines from breast cancer, pancreatic cancer and ovarian cancer and in ovarian cancer patient-derived cells, we analyzed stem cell phenotype and tumor growth via mRNA, miRNA, and protein expression, spheroid formation, and growth in patient-derived xenografts. We show that treatment with EMT-promoting growth factors or SNAI1 overexpression increased stemness and reduced let-7 expression, while SNAI1 knockdown reduced stemness and restored let-7 expression. Rescue experiments demonstrate that the pro-stemness effects of SNAI1 are mediated via let-7. In vivo, nanoparticle-delivered siRNA successfully knocked down SNAI1 in orthotopic patient-derived xenografts, accompanied by reduced stemness and increased let-7 expression, and reduced tumor burden. Chromatin immunoprecipitation demonstrated that SNAI1 binds the promoters of various let-7 family members, and luciferase assays revealed that SNAI1 represses let-7 transcription. In conclusion, the SNAI1/let-7 axis is an important component of stemness pathways in cancer cells, and this study provides a rationale for future work examining this axis as a potential target for cancer stem cell-specific therapies.Novelty and ImpactThis study provides new insight into molecular mechanisms by which EMT transcription factor SNAI1 exerts its pro-stemness effects in cancer cells, demonstrating its potential as a stem cell-directed target for therapy. In vitro and in vivo, mesoporous silica nanoparticle-mediated SNAI1 knockdown resulted in restoration of let-7 miRNA, inhibiting stemness and reducing tumor burden. Our studies validate in vivo nanoparticle-delivered RNAi targeting the SNAI1/let-7 axis as a clinically relevant approach.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2020 ◽  
Vol 16 (32) ◽  
pp. 2619-2633 ◽  
Author(s):  
Fang Zhang ◽  
Jian-ying Cui ◽  
Hai-feng Gao ◽  
Hao Yu ◽  
Fu-feng Gao ◽  
...  

Aim: Cancer-associated fibroblasts (CAFs) are closely related to epithelial-mesenchymal transition (EMT) and chemoresistance in various cancers. Patients & methods: Experiments in vivo and retrospective studies were applied to explore the role of CAFs in epithelial ovarian cancer (EOC). Results: We found that CXCL12 expression was significantly increased in interstitial CAFs by immunofluorescence. CAF-derived CXCL12 induced EMT though CXCR4/Wnt/β-catenin pathway in EOC cells. Inhibited EMT led to increased apoptosis and cisplatin sensitivity. Multivariate regression analysis shows that CXCL12 expression in the stromal cells and cytoreduction satisfaction are independent prognostic markers of platinum-containing chemotherapy sensitivity in 296 EOC patients. Conclusion: CAFs may activate the Wnt/β-catenin pathway in EOC cells via CXCL12/CXCR4 axis, and then induce EMT and cisplatin resistance.


Author(s):  
Ming Zhang ◽  
Baochang Shi ◽  
Kai Zhang

Deregulation of miR-186 and Twist1 has been identified to be involved in the progression of multiple cancers. However, the detailed molecular mechanisms underlying miR-186-involved cholangiocarcinoma (CCA) are still unknown. In this study, we found that miR-186 was downregulated in CCA tissues and cell lines, and negatively correlated with the expression of Twist1 protein. In vitro assays demonstrated that miR-186 mimics repressed cell proliferation, in vivo tumor formation, and caused cell cycle arrest. miR-186 mimics also inhibited the migration and invasion of CCLP1 and SG-231 cells. Mechanistically, the 3′-untranslated region (3′-UTR) of Twist1 mRNA is a direct target of miR-186. Further, miR-186 inhibited the expressions of Twist1, N-cadherin, vimentin, and matrix metallopeptidase 9 (MMP9) proteins, whereas it increased the expression of E-cadherin in CCLP1 and SG-231 cells. Silencing of Twist1 expression enhanced the inhibitory effects of miR-186 on the proliferation, migration, and invasion of CCLP1 and SG-231 cells. In conclusion, miR-186 inhibited cell proliferation, migration, invasion, and epithelial‐mesenchymal transition (EMT) through targeting Twist1 in human CCA. Thus, miR-186/Twist1 axis may benefit the development of therapies for CCA.


Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 498
Author(s):  
SooHyeon Moon ◽  
YeJin Ok ◽  
SeonYeong Hwang ◽  
Ye Seon Lim ◽  
Hye-Yoon Kim ◽  
...  

Recent attention has focused on the development of an effective three-dimensional (3D) cell culture system enabling the rapid enrichment of cancer stem cells (CSCs) that are resistant to therapies and serving as a useful in vitro tumor model that accurately reflects in vivo behaviors of cancer cells. Presently, an effective 3D in vitro model of ovarian cancer (OC) was developed using a marine collagen-based hydrogel. Advantages of the model include simplicity, efficiency, bioactivity, and low cost. Remarkably, OC cells grown in this hydrogel exhibited biochemical and physiological features, including (1) enhanced cell proliferation, migration and invasion, colony formation, and chemoresistance; (2) suppressed apoptosis with altered expression levels of apoptosis-regulating molecules; (3) upregulated expression of crucial multidrug resistance-related genes; (4) accentuated expression of key molecules associated with malignant progression, such as epithelial–mesenchymal transition transcription factors, Notch, and pluripotency biomarkers; and (5) robust enrichment of ovarian CSCs. The findings indicate the potential of our 3D in vitro OC model as an in vitro research platform to study OC and ovarian CSC biology and to screen novel therapies targeting OC and ovarian CSCs.


Sign in / Sign up

Export Citation Format

Share Document