scholarly journals Expiratory flow limitation developed in ICU patients: relationship of fluid overload, respiratory mechanics, and outcome

Critical Care ◽  
2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Heyan Wang ◽  
Hangyong He
2007 ◽  
Vol 102 (6) ◽  
pp. 2217-2226 ◽  
Author(s):  
Dror Ofir ◽  
Pierantonio Laveneziana ◽  
Katherine A. Webb ◽  
Denis E. O'Donnell

The main purpose of this study was to examine the relative contribution of respiratory mechanical factors and the increased metabolic cost of locomotion to exertional breathlessness in obese women. We examined the relationship of intensity of breathlessness to ventilation (V̇e) when exertional oxygen uptake (V̇o2) of obesity was minimized by cycle exercise. Eighteen middle-aged (54 ± 8 yr, mean ± SD) obese [body mass index (BMI) 40.2 ± 7.8 kg/m2] and 13 age-matched normal-weight (BMI 23.3 ± 1.7 kg/m2) women were studied. Breathlessness at higher submaximal cycle work rates was significantly increased (by ≥1 Borg unit) in obese compared with normal-weight women, in association with a 35–45% increase in V̇e and a higher metabolic cost of exercise. Obese women demonstrated greater resting expiratory flow limitation, reduced resting end-expiratory lung volume (EELV)(by 20%), and progressive increases in dynamic EELV during exercise: peak inspiratory capacity (IC) decreased by 16% (0.39 liter) of the resting value. V̇e/V̇o2 slopes were unchanged in obesity. Breathlessness ratings at any given V̇e or V̇o2 were not increased in obesity, suggesting that respiratory mechanical factors were not contributory. Our results indicate that in obese women, recruitment of resting IC and dynamic increases in EELV with exercise served to optimize operating lung volumes and to attenuate expiratory flow limitation so as to accommodate the increased ventilatory demand without increased breathlessness.


2015 ◽  
Vol 118 (3) ◽  
pp. 255-264 ◽  
Author(s):  
Sabrina S. Wilkie ◽  
Paolo B. Dominelli ◽  
Benjamin C. Sporer ◽  
Michael S. Koehle ◽  
A. William Sheel

In this study we tested the hypothesis that inspiring a low-density gas mixture (helium-oxygen; HeO2) would minimize mechanical ventilatory constraints and preferentially increase exercise performance in females relative to males. Trained male ( n = 11, 31 yr) and female ( n = 10, 26 yr) cyclists performed an incremental cycle test to exhaustion to determine maximal aerobic capacity (V̇o2max; male = 61, female = 56 ml·kg−1·min−1). A randomized, single-blinded crossover design was used for two experimental days where subjects completed a 5-km cycling time trial breathing humidified compressed room air or HeO2 (21% O2:balance He). Subjects were instrumented with an esophageal balloon for the assessment of respiratory mechanics. During the time trial, we assessed the ability of HeO2 to alleviate mechanical ventilatory constraints in three ways: 1) expiratory flow limitation, 2) utilization of ventilatory capacity, and 3) the work of breathing. We found that HeO2 significantly reduced the work of breathing, increased the size of the maximal flow-volume envelope, and reduced the fractional utilization of the maximal ventilatory capacity equally between men and women. The primary finding of this study was that inspiring HeO2 was associated with a statistically significant performance improvement of 0.7% (3.2 s) for males and 1.5% (8.1 s) for females ( P < 0.05); however, there were no sex differences with respect to improvement in time trial performance ( P > 0.05). Our results suggest that the extent of sex-based differences in airway anatomy, work of breathing, and expiratory flow limitation is not great enough to differentially affect whole body exercise performance.


2020 ◽  
pp. 00264-2020
Author(s):  
Giorgos Marinakis ◽  
Michael Paraschos ◽  
Maria Patrani ◽  
Theodoros Tsoutsouras ◽  
Miltos Vassiliou

BackgroundΕxpiratory flow limitation (EFL) is common among ICU patients under mechanical ventilation (MV) and may have significant clinical consequences. In the present study, we examine the possibility of non-interventional detection of EFL during experimental MV.MethodsEight artificially ventilated New Zealand rabbits were included in the experiments. EFL was induced during MV by application of negative expiratory pressure (−5, −8 and −10 hPa) and detected by the negative expiratory pressure (NEP) technique. Airway pressure (Paw) and flow (Vʹ) were digitally recorded and processed off-line for the evaluation of respiratory mechanics. The method is based on the computation and monitoring of instantaneous respiratory resistance Rrs(t). The resistive pressure (Paw,res(t)) is calculated by subtracting from Paw its elastic component and the end expiratory pressure (EEP), as assessed by linear regression. Then, Rrs(t) is computed as the instant ratio Paw,res(t)/Vʹ(t).ResultsTwo completely different patterns of expiratory Rrs(t) separate the cases with EFL from those without EFL. Small and random fluctuations are noticed when EFL is absent, whereas the onset of EFL is accompanied by an abrupt and continuous rise in Rrs(t), towards the end of expiration. Thus, EFL is not only detected but may also be quantified from the volume still to be expired at the time EFL occurs.ConclusionThe proposed technique is a simple, accurate and non-interventional tool for the EFL monitoring during MV.


1999 ◽  
Vol 87 (5) ◽  
pp. 1973-1980 ◽  
Author(s):  
Nikolai Aljuri ◽  
Lutz Freitag ◽  
José G. Venegas

Flow limitation during forced exhalation and gas trapping during high-frequency ventilation are affected by upstream viscous losses and by the relationship between transmural pressure (Ptm) and cross-sectional area ( A tr) of the airways, i.e., tube law (TL). Our objective was to test the validity of a simple lumped-parameter model of expiratory flow limitation, including the measured TL, static pressure recovery, and upstream viscous losses. To accomplish this objective, we assessed the TLs of various excised animal tracheae in controlled conditions of quasi-static (no flow) and steady forced expiratory flow. A tr was measured from digitized images of inner tracheal walls delineated by transillumination at an axial location defining the minimal area during forced expiratory flow. Tracheal TLs followed closely the exponential form proposed by Shapiro (A. H. Shapiro. J. Biomech. Eng. 99: 126–147, 1977) for elastic tubes: Ptm = K p[( A tr/ A tr0)− n − 1], where A tr0 is A tr at Ptm = 0 and K p is a parametric factor related to the stiffness of the tube wall. Using these TLs, we found that the simple model of expiratory flow limitation described well the experimental data. Independent of upstream resistance, all tracheae with an exponent n < 2 experienced flow limitation, whereas a trachea with n > 2 did not. Upstream viscous losses, as expected, reduced maximal expiratory flow. The TL measured under steady-flow conditions was stiffer than that measured under expiratory no-flow conditions, only if a significant static pressure recovery from the choke point to atmosphere was assumed in the measurement.


2017 ◽  
Vol Volume 12 ◽  
pp. 1503-1506 ◽  
Author(s):  
James Dean ◽  
Umme Kolsum ◽  
Paul Hitchen ◽  
Vanadana Gupta ◽  
Dave Singh

2010 ◽  
Vol 108 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
Katherine E. Swain ◽  
Sara K. Rosenkranz ◽  
Bethany Beckman ◽  
Craig A. Harms

The purpose of this study was to compare the prevalence and implications of expiratory flow limitation (EFL) during exercise in boys and girls. Forty healthy, prepubescent boys (B; n = 20) and girls (G; n = 20) were tested. Subjects completed pulmonary function tests and an incremental cycle maximal oxygen uptake (V̇o2max) test. EFL was recorded at the end of each exercise stage using the % tidal volume overlap method. Ventilatory and metabolic data were recorded throughout exercise. Arterial oxygen saturation (SpO2) was determined via pulse oximetry. Body composition was determined using dual-energy X-ray absorptiometry. There were no differences ( P > 0.05) in height, weight, or body composition between boys and girls. At rest, boys had significantly higher lung volumes (total lung capacity, B = 2.6 ± 0.5 liters, G = 2.1 ± 0.5 liters) and peak expiratory flow rates (B = 3.6 ± 0.6 l/s; G = 1.6 ± 0.3 l/s). Boys also had significantly higher V̇o2max (B = 46.9 ± 5.9 ml·kg lean body mass−1·min−1, G = 41.7 ± 6.6 ml·kg lean body mass−1·min−1) and maximal ventilation (B = 49.8 ± 8.8 l/min, G = 41.2 ± 8.3 l/min) compared with girls. There were no sex differences ( P > 0.05) at V̇o2max in VE /Vco2, end-tidal Pco2, heart rate, respiratory exchange ratio, or SpO2. The prevalence (B = 19/20 vs. G = 18/20) and severity (B = 58 ± 7% vs. G = 43 ± 8% tidal volume) of EFL was not significantly different in boys compared with girls at V̇o2max. A significant relationship existed between % EFL at V̇o2max and the change in end-expiratory lung volume from rest to maximal exercise in boys ( r = 0.77) and girls ( r = 0.75). In summary, our data suggests that EFL is highly and equally prevalent in prepubescent boys and girls during heavy exercise, which led to an increased end-expiratory lung volume but not to decreases in arterial oxygen saturation.


1983 ◽  
Vol 52 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Ronald J. Knudson ◽  
Robert C. Schroter ◽  
Dwyn E. Knudson ◽  
Stuart Sugihara

2013 ◽  
Vol 25 (1) ◽  
pp. 84-100 ◽  
Author(s):  
Katherine E. Robben ◽  
David C. Poole ◽  
Craig A. Harms

A two-test protocol (incremental/ramp (IWT) + supramaximal constant-load (CWR)) to affirm max and obviate reliance on secondary criteria has only been validated in highly fit children. In girls (n = 15) and boys (n = 12) with a wide range of VO2max (17–47 ml/kg/min), we hypothesized that this procedure would evince a VO2-WR plateau and unambiguous VO2max even in the presence of expiratory flow limitation (EFL). A plateau in the VO2-work rate relationship occurred in 75% of subjects irrespective of EFL There was a range in RER at max exercise for girls (0.97–1.14; mean 1.06 ± 0.04) and boys (0.98−1.09; mean 1.03 ± 0.03) such that 3/15 girls and 2/12 boys did not achieve the criterion RER. Moreover, in girls with RER > 1.0 it would have been possible to achieve this criterion at 78% VO2max. Boys achieved 92% VO2max at RER = 1.0. This was true also for HRmax where 8/15 girls’ and 6/12 boys’ VO2max would have been rejected based on HRmax being < 90% of age-predicted HRmax. In those who achieved the HRmax criterion, it represented a VO2 of 86% (girls) and 87% (boys) VO2max. We conclude that this two-test protocol confirms VO2max in children across a threefold range of VO2max irrespective of EFL and circumvents reliance on secondary criteria.


Sign in / Sign up

Export Citation Format

Share Document