scholarly journals Predicting the most appropriate wood biomass for selected industrial applications: comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Pierre-Louis Bombeck ◽  
Vinay Khatri ◽  
Fatma Meddeb-Mouelhi ◽  
Daniel Montplaisir ◽  
Aurore Richel ◽  
...  
2018 ◽  
Vol 19 (8) ◽  
pp. 2379 ◽  
Author(s):  
Young-Jin Park ◽  
Yong-Un Jeong ◽  
Won-Sik Kong

Next-generation sequencing (NGS) of the Flammulina elastica (wood-rotting basidiomycete) genome was performed to identify carbohydrate-active enzymes (CAZymes). The resulting assembly (31 kmer) revealed a total length of 35,045,521 bp (49.7% GC content). Using the AUGUSTUS tool, 12,536 total gene structures were predicted by ab initio gene prediction. An analysis of orthologs revealed that 6806 groups contained at least one F. elastica protein. Among the 12,536 predicted genes, F. elastica contained 24 species-specific genes, of which 17 genes were paralogous. CAZymes are divided into five classes: glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycosyltransferases (GTs), and auxiliary activities (AA). In the present study, annotation of the predicted amino acid sequences from F. elastica genes using the dbCAN CAZyme database revealed 508 CAZymes, including 82 AAs, 218 GHs, 89 GTs, 18 PLs, 59 CEs, and 42 carbohydrate binding modules in the F. elastica genome. Although the CAZyme repertoire of F. elastica was similar to those of other fungal species, the total number of GTs in F. elastica was larger than those of other basidiomycetes. This genome information elucidates newly identified wood-degrading machinery in F. elastica, offers opportunities to better understand this fungus, and presents possibilities for more detailed studies on lignocellulosic biomass degradation that may lead to future biotechnological and industrial applications.


2019 ◽  
Vol 7 (10) ◽  
pp. 421
Author(s):  
Young-Jin Park ◽  
Chang-Soo Lee ◽  
Won-Sik Kong

Next-generation sequencing (NGS) of the Flammulina rossica (wood-rotting basidiomycete) genome was performed to identify its carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) revealed a total length of 35,646,506 bp (49.79% GC content). In total, 12,588 gene models of F. rossica were predicted using an ab initio gene prediction tool (AUGUSTUS). Orthologous analysis with other fungal species revealed that 7433 groups contained at least one F. rossica gene. Additionally, 12,033 (95.6%) of 12,588 genes for F. rossica proteins had orthologs among the Dikarya, and F. rossica contained 12 species-specific genes. CAZyme annotation in the F. rossica genome revealed 511 genes predicted to encode CAZymes including 102 auxiliary activities, 236 glycoside hydrolases, 94 glycosyltransferases, 19 polysaccharide lyases, 56 carbohydrate esterases, and 21 carbohydrate binding-modules. Among the 511 genes, several genes were predicted to simultaneously encode two different CAZymes such as glycoside hydrolases (GH) as well as carbohydrate-binding module (CBM). The genome information of F. rossica offers opportunities to understand the wood-degrading machinery of this fungus and will be useful for biotechnological and industrial applications.


2020 ◽  
Vol 9 (1) ◽  
pp. 20
Author(s):  
Hye-Won Yu ◽  
Ji-Hoon Im ◽  
Won-Sik Kong ◽  
Young-Jin Park

The purpose of this study was to determine the genome sequence of Flammulina velutipes var. lupinicola based on next-generation sequencing (NGS) and to identify the genes encoding carbohydrate-active enzymes (CAZymes) in the genome. The optimal assembly (71 kmer) based on ABySS de novo assembly revealed a total length of 33,223,357 bp (49.53% GC content). A total of 15,337 gene structures were identified in the F.velutipes var. lupinicola genome using ab initio gene prediction method with Funannotate pipeline. Analysis of the orthologs revealed that 11,966 (96.6%) out of the 15,337 predicted genes belonged to the orthogroups and 170 genes were specific for F. velutipes var. lupinicola. CAZymes are divided into six classes: auxiliary activities (AAs), glycosyltransferases (GTs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycoside hydrolases (GHs), and carbohydrate-binding modules (CBMs). A total of 551 genes encoding CAZymes were identified in the F. velutipes var. lupinicola genome by analyzing the dbCAN meta server database (HMMER, Hotpep, and DIAMOND searches), which consisted of 54–95 AAs, 145–188 GHs, 55–73 GTs, 6–19 PLs, 13–59 CEs, and 7–67 CBMs. CAZymes can be widely used to produce bio-based products (food, paper, textiles, animal feed, and biofuels). Therefore, information about the CAZyme repertoire of the F. velutipes var. lupinicola genome will help in understanding the lignocellulosic machinery and in-depth studies will provide opportunities for using this fungus for biotechnological and industrial applications.


2021 ◽  
pp. 100638
Author(s):  
Marie Sofie Møller ◽  
Souad El Bouaballati ◽  
Bernard Henrissat ◽  
Birte Svensson

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3175
Author(s):  
Mariana Barbosa ◽  
Hélvio Simões ◽  
Duarte Miguel F. Prazeres

Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hong-Hsing Liu ◽  
Yu-Chen Lin ◽  
Chen-Shuan Chung ◽  
Kevin Liu ◽  
Ya-Hui Chang ◽  
...  

AbstractBowel microbiota is a “metaorgan” of metabolisms on which quantitative readouts must be performed before interventions can be introduced and evaluated. The study of the effects of probiotic Clostridium butyricum MIYAIRI 588 (CBM588) on intestine transplantees indicated an increased percentage of the “other glycan degradation” pathway in 16S-rRNA-inferred metagenomes. To verify the prediction, a scoring system of carbohydrate metabolisms derived from shotgun metagenomes was developed using hidden Markov models. A significant correlation (R = 0.9, p < 0.015) between both modalities was demonstrated. An independent validation revealed a strong complementarity (R = −0.97, p < 0.002) between the scores and the abundance of “glycogen degradation” in bacteria communities. On applying the system to bacteria genomes, CBM588 had only 1 match and ranked higher than the other 8 bacteria evaluated. The gram-stain properties were significantly correlated to the scores (p < 5 × 10−4). The distributions of the scored protein domains indicated that CBM588 had a considerably higher (p < 10−5) proportion of carbohydrate-binding modules than other bacteria, which suggested the superior ability of CBM588 to access carbohydrates as a metabolic driver to the bowel microbiome. These results demonstrated the use of integrated counts of protein domains as a feasible readout for metabolic potential within bacteria genomes and human metagenomes.


2009 ◽  
Vol 300 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Márcia A.S. Correia ◽  
Virgínia M.R. Pires ◽  
Harry J. Gilbert ◽  
David N. Bolam ◽  
Vânia O. Fernandes ◽  
...  

BioTechniques ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 435-443 ◽  
Author(s):  
Shi-You Ding ◽  
Qi Xu ◽  
Mursheda K. Ali ◽  
John O. Baker ◽  
Edward A. Bayer ◽  
...  

Author(s):  
Almog Hershko Rimon ◽  
Oded Livnah ◽  
Inna Rozman Grinberg ◽  
Lizett Ortiz de Ora ◽  
Oren Yaniv ◽  
...  

A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Å resolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.


Sign in / Sign up

Export Citation Format

Share Document