scholarly journals THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Abhishek S. Patri ◽  
Ramya Mohan ◽  
Yunqiao Pu ◽  
Chang G. Yoo ◽  
Arthur J. Ragauskas ◽  
...  

Abstract Background Conventional aqueous dilute sulfuric acid (DSA) pretreatment of lignocellulosic biomass facilitates hemicellulose solubilization and can improve subsequent enzymatic digestibility of cellulose to fermentable glucose. However, much of the lignin after DSA pretreatment either remains intact within the cell wall or readily redeposits back onto the biomass surface. This redeposited lignin has been shown to reduce enzyme activity and contribute to rapid enzyme deactivation, thus, necessitating significantly higher enzyme loadings than deemed economical for biofuel production from biomass. Results In this study, we demonstrate how detrimental lignin redeposition on biomass surface after pretreatment can be prevented by employing Co-solvent Enhanced Lignocellulosic Fractionation (CELF) pretreatment that uses THF–water co-solvents with dilute sulfuric acid to solubilize lignin and overcome limitations of DSA pretreatment. We first find that enzymatic hydrolysis of CELF-pretreated switchgrass can sustain a high enzyme activity over incubation periods as long as 5 weeks with enzyme doses as low as 2 mg protein/g glucan to achieve 90% yield to glucose. A modified Ninhydrin-based protein assay revealed that the free-enzyme concentration in the hydrolysate liquor, related to enzyme activity, remained unchanged over long hydrolysis times. DSA-pretreated switchgrass, by contrast, had a 40% drop in free enzymes in solution during incubation, providing evidence of enzyme deactivation. Furthermore, measurements of enzyme adsorption per gram of lignin suggested that CELF prevented lignin redeposition onto the biomass surface, and the little lignin left in the solids was mostly integral to the original lignin–carbohydrate complex (LCC). Scanning electron micrographs and NMR characterization of lignin supported this observation. Conclusions Enzymatic hydrolysis of solids from CELF pretreatment of switchgrass at low enzyme loadings was sustained for considerably longer times and reached higher conversions than for DSA solids. Analysis of solids following pretreatment and enzymatic hydrolysis showed that prolonged cellulase activity could be attributed to the limited lignin redeposition on the biomass surface making more enzymes available for hydrolysis of more accessible glucan.

Energy ◽  
2020 ◽  
Vol 195 ◽  
pp. 116986 ◽  
Author(s):  
Juan Camilo Solarte-Toro ◽  
Yessica Chacón-Pérez ◽  
Sara Piedrahita-Rodríguez ◽  
Jhonny Alejandro Poveda Giraldo ◽  
José António Teixeira ◽  
...  

2007 ◽  
Vol 30 (7) ◽  
pp. 938-944 ◽  
Author(s):  
X. B. Lu ◽  
Y. M. Zhang ◽  
J. Yang ◽  
Y. Liang

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


1985 ◽  
Author(s):  
John F. Harris ◽  
Andrew J. Baker ◽  
Anthony H. Conner ◽  
Thomas W. Jeffries ◽  
James L. Minor ◽  
...  

2007 ◽  
Vol 46 (7) ◽  
pp. 1938-1944 ◽  
Author(s):  
Eliana V. Canettieri ◽  
George J. M. Rocha ◽  
João A. Carvalho, ◽  
João B. A. Silva

Sign in / Sign up

Export Citation Format

Share Document