scholarly journals Mosquito blood-feeding patterns and nesting behavior of American crows, an amplifying host of West Nile virus

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sarah S. Wheeler ◽  
Conor C. Taff ◽  
William K. Reisen ◽  
Andrea K. Townsend

Abstract Background Although American crows are a key indicator species for West Nile virus (WNV) and mount among the highest viremias reported for any host, the importance of crows in the WNV transmission cycle has been called into question because of their consistent underrepresentation in studies of Culex blood meal sources. Here, we test the hypothesis that this apparent underrepresentation could be due, in part, to underrepresentation of crow nesting habitat from mosquito sampling designs. Specifically, we examine how the likelihood of a crow blood meal changes with distance to and timing of active crow nests in a Davis, California, population. Methods Sixty artificial mosquito resting sites were deployed from May to September 2014 in varying proximity to known crow nesting sites, and Culex blood meal hosts were identified by DNA barcoding. Genotypes from crow blood meals and local crows (72 nestlings from 30 broods and 389 local breeders and helpers) were used to match mosquito blood meals to specific local crows. Results Among the 297 identified Culex blood meals, 20 (6.7%) were attributable to crows. The mean percentage of blood meals of crow origin was 19% in the nesting period (1 May–18 June 2014), but 0% in the weeks after fledging (19 June–1 September 2014), and the likelihood of a crow blood meal increased with proximity to an active nest: the odds that crows hosted a Culex blood meal were 38.07 times greater within 10 m of an active nest than > 10 m from an active nest. Nine of ten crow blood meals that could be matched to a genotype of a specific crow belonged to either nestlings in these nests or their mothers. Six of the seven genotypes that could not be attributed to sampled birds belonged to females, a sex bias likely due to mosquitoes targeting incubating or brooding females. Conclusion Data herein indicate that breeding crows serve as hosts for Culex in the initial stages of the WNV spring enzootic cycle. Given their high viremia, infected crows could thereby contribute to the re-initiation and early amplification of the virus, increasing its availability as mosquitoes shift to other moderately competent later-breeding avian hosts.

2005 ◽  
Vol 86 (8) ◽  
pp. 2175-2183 ◽  
Author(s):  
Greta Jerzak ◽  
Kristen A. Bernard ◽  
Laura D. Kramer ◽  
Gregory D. Ebel

Intrahost genetic diversity was analysed in naturally infected mosquitoes and birds to determine whether West Nile virus (WNV) exists in nature as a quasispecies and to quantify selective pressures within and between hosts. WNV was sampled from ten infected birds and ten infected mosquito pools collected on Long Island, NY, USA, during the peak of the 2003 WNV transmission season. A 1938 nt fragment comprising the 3′ 1159 nt of the WNV envelope (E) coding region and the 5′ 779 nt of the non-structural protein 1 (NS1) coding region was amplified and cloned and 20 clones per specimen were sequenced. Results from this analysis demonstrate that WNV infections are derived from a genetically diverse population of genomes in nature. The mean nucleotide diversity was 0·016 % within individual specimens and the mean percentage of clones that differed from the consensus sequence was 19·5 %. WNV sequences in mosquitoes were significantly more genetically diverse than WNV in birds. No host-dependent bias for particular types of mutations was observed and estimates of genetic diversity did not differ significantly between E and NS1 coding sequences. Non-consensus clones obtained from two avian specimens had highly similar genetic signatures, providing preliminary evidence that WNV genetic diversity may be maintained throughout the enzootic transmission cycle, rather than arising independently during each infection. Evidence of purifying selection was obtained from both intra- and interhost WNV populations. Combined, these data support the observation that WNV populations may be structured as a quasispecies and document strong purifying natural selection in WNV populations.


The Condor ◽  
2005 ◽  
Vol 107 (1) ◽  
pp. 128-132 ◽  
Author(s):  
Carolee Caffrey ◽  
Shauna C. R. Smith ◽  
Tiffany J. Weston

Abstract In its spread west across North America in 2002, West Nile virus (WNV) reached a population of marked American Crows (Corvus brachyrhynchos) in Stillwater, Oklahoma, in late summer. Within two months, 46 of 120 individuals were missing or known to be dead, 39 of which (33% of the population) are estimated to have died for WNV-related reasons. In 2003, 56 of 78 marked crows disappeared or were found dead between June and November. Five of the 28 juvenile losses were possibly unrelated to WNV, thus we estimate that 65% of our population died because of this pathogen in 2003. The total loss of 72% of population members, including 82% of juveniles, in a single year of WNV exposure raises concern for precipitous declines in American Crow populations in coming years. El Virus del Nilo Occidental Devasta una Población de Corvus brachyrhynchos Resumen. En su diseminación hacia el oeste de América del Norte durante 2002, el Virus del Nilo Occidental alcanzó a fines del verano una población marcada de Corvus brachyrhynchos en Stillwater, Oklahoma. En menos de dos meses, 46 de los 120 individuos registrados desaparecieron o murieron, 39 de los cuales (33% de la población) estimamos que murieron por causas relacionadas con el virus. En 2003, 56 de los 78 cuervos marcados desaparecieron o fueron encontrados muertos entre junio y noviembre. Cinco de las 28 pérdidas de juveniles posiblemente no estuvieron relacionadas con el virus, por lo que estimamos que el 65% de nuestra población murió a causa de este patógeno en 2003. La pérdida total del 72% de los miembros de la población, incluyendo el 82% de los juveniles, en un solo año de exposición al virus plantea preocupaciones en cuanto a la posibilidad de una disminución precipitada de las poblaciones de C. brachyrhynchos en los próximos años.


2015 ◽  
Vol 370 (1665) ◽  
pp. 20130561 ◽  
Author(s):  
Shlomit Paz

West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Melissa S. Nolan ◽  
Ana Zangeneh ◽  
Salma A. Khuwaja ◽  
Diana Martinez ◽  
Susan N. Rossmann ◽  
...  

West Nile virus (WNV), a mosquito-borne virus, has clinically affected hundreds of residents in the Houston metropolitan area since its introduction in 2002. This study aimed to determine if living within close proximity to a water source increases one’s odds of infection with WNV. We identified 356 eligible WNV-positive cases and 356 controls using a population proportionate to size model with US Census Bureau data. We found that living near slow moving water sources was statistically associated with increased odds for human infection, while living near moderate moving water systems was associated with decreased odds for human infection. Living near bayous lined with vegetation as opposed to concrete also showed increased risk of infection. The habitats of slow moving and vegetation lined water sources appear to favor the mosquito-human transmission cycle. These methods can be used by resource-limited health entities to identify high-risk areas for arboviral disease surveillance and efficient mosquito management initiatives.


2010 ◽  
Vol 47 (4) ◽  
pp. 625-633 ◽  
Author(s):  
Isik Unlu ◽  
Wayne L. Kramer ◽  
Alma F. Roy ◽  
Lane D. Foil

Abstract Since 2001, alligator farms in the United States have sustained substantial economic losses because of West Nile virus (WNV) outbreaks in American alligators (Alligator mississippiensis). Once an initial infection is introduced into captive alligators, WNV can spread among animals by contaminative transmission. Some outbreaks have been linked to feeding on infected meat or the introduction of infected hatchlings, but the initial source of WNV infection has been uncertain in other outbreaks. We conducted a study to identify species composition and presence of WNV in mosquito populations associated with alligator farms in Louisiana. A second objective of this study was to identify the origin of mosquito blood meals collected at commercial alligator farms. Mosquitoes were collected from 2004 to 2006, using Centers for Disease Control light traps, gravid traps, backpack aspirators, and resting boxes. We collected a total of 58,975 mosquitoes representing 24 species. WNV was detected in 41 pools of females from 11 mosquito species: Anopheles crucians, Anopheles quadrimaculatus, Coquillettidia perturbans, Culex coronator, Culex erraticus, Culex nigripalpus, Culex quinquefasciatus, Mansonia titillans, Aedes sollicitans, Psorophora columbiae, and Uranotaenia lowii. The blood meal origins of 213 field-collected mosquitoes were identified based on cytochrome B sequence identity. Alligator blood was detected in 21 mosquitoes representing six species of mosquitoes, including Cx. quinquefasciatus and Cx. nigripalpus. Our results showed that mosquitoes of species that are known to be competent vectors of WNV fed regularly on captive alligators. Therefore, mosquitoes probably are important in the role of transmission of WNV at alligator farms.


Sign in / Sign up

Export Citation Format

Share Document