scholarly journals Dual-energy CT in gout patients: Do all colour-coded lesions actually represent monosodium urate crystals?

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Sara Nysom Christiansen ◽  
Felix Christoph Müller ◽  
Mikkel Østergaard ◽  
Ole Slot ◽  
Jakob M. Møller ◽  
...  

Abstract Background Dual-energy CT (DECT) can acknowledge differences in tissue compositions and can colour-code tissues with specific features including monosodium urate (MSU) crystals. However, when evaluating gout patients, DECT frequently colour-codes material not truly representing MSU crystals and this might lead to misinterpretations. The characteristics of and variations in properties of colour-coded DECT lesions in gout patients have not yet been systematically investigated. The objective of this study was to evaluate the properties and locations of colour-coded DECT lesions in gout patients. Methods DECT of the hands, knees and feet were performed in patients with suspected gout using factory default gout settings, and colour-coded DECT lesions were registered. For each lesion, properties [mean density (mean of Hounsfield Units (HU) at 80 kV and Sn150kV), mean DECT ratio and size] and location were determined. Subgroup analysis was performed post hoc evaluating differences in locations of lesions when divided into definite MSU depositions and possibly other lesions. Results In total, 4033 lesions were registered in 27 patients (23 gout patients, 3918 lesions; 4 non-gout patients, 115 lesions). In gout patients, lesions had a median density of 160.6 HU and median size of 6 voxels, and DECT ratios showed an approximated normal distribution (mean 1.06, SD 0.10), but with a right heavy tail consistent with the presence of smaller amounts of high effective atomic number lesions (e.g. calcium-containing lesions). The most common locations of lesions were 1st metatarsophalangeal (MTP1), knee and midtarsal joints along with quadriceps and patella tendons. Subgroup analyses showed that definite MSU depositions (large volume, low DECT ratio, high density) had a similar distribution pattern, whereas possible calcium-containing material (high DECT ratio) and non-gout MSU-imitating lesions (properties as definite MSU depositions in non-gout patients) were primarily found in some larger joints (knee, midtarsal and talocrural) and tendons (Achilles and quadriceps). MTP1 joints and patella tendons showed only definite MSU depositions. Conclusion Colour-coded DECT lesions in gout patients showed heterogeneity in properties and distribution. MTP1 joints and patella tendons exclusively showed definite MSU depositions. Hence, a sole focus on these regions in the evaluation of gout patients may improve the specificity of DECT scans.

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Elin Svensson ◽  
Ylva Aurell ◽  
Lennart T. H. Jacobsson ◽  
Anton Landgren ◽  
Valgerdur Sigurdardottir ◽  
...  

Abstract Background A definite diagnosis of gout requires demonstration of monosodium urate crystals in synovial fluid or in tophi, which in clinical practice today seldom is done. Dual energy CT (DECT) has repeatedly been shown to be able to detect monosodium urate crystals in tissues, hence being an alternative method to synovial fluid microscopy. The vast majority of these studies were performed with CT scanners with two X-ray tubes. In the present study we aim to investigate if and at what locations DECT with rapid kilovoltage-switching source with gemstone scintillator detector (GSI) can identify MSU crystals in patients with clinically diagnosed gout. We also performed a reliability study between two independent readings. Methods Patients with new or established gout who had been examined with DECT GSI scanning of the feet at Sahlgrenska University Hospital, Mölndal between 2015 and 2018 were identified. Their medical records were sought for gout disease characteristics using a structured protocol. Urate deposits in MTP1, MTP 2–5, ankle/midfoot joints and tendons were scored semiquantatively in both feet and presence of artifacts in nail and skin as well as beam hardening and noise were recorded. Two radiologists performed two combined readings and scoring of the images, thus consensus was reached over the scoring at each occasion (Espeland et al., BMC Med Imaging. 2013;13:4). The two readings were compared with kappa statistics. Results DECT GSI could identify urate deposits in the feet of all 55 participants with gout. Deposits were identified in the MTP-joints of all subjects but were also present in ankle/midfoot joints and tendons in 96 and 75% respectively. Deposition of urate was predicted by longer disease duration (Spearman’s Rho 0.64, p < .0001) and presence of tophi (p = 0.0005). Artifacts were common and mostly found in the nails (73%), a minority displayed skin artifacts (31%) while beam hardening and noise was rare. The agreement between the two readings was good (Κ = 0.66, 95% CI = 0.61–0.71). Conclusion The validity of DECT GSI in gout is supported by the identification of urate in all patients with clinical gout and the good correlations with clinical characteristics. The occurrence of artifacts was relatively low with expected locations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haibing Chen ◽  
Lili Zhao ◽  
Fengjing Liu ◽  
Si Chen ◽  
Zhumeng Hu ◽  
...  

Abstract Urate in the fingernails of gout patients and healthy volunteers was successfully detected by high-performance liquid chromatography (HPLC) with ultraviolet (UV) in our previous research. This study aimed to further investigate whether nail urate could be a proxy for the burden of monosodium urate (MSU) crystals deposits in gout. To this end, we conducted a study in two parts. Firstly, we successfully detected urate in the nail by HPLC–UV and evaluated nail urate concentrations in control subjects and patients with gout. As expected, we found that levels of nail urate were significantly higher in patients with gout than in healthy controls, and the nail urate level was significantly correlated with the volume of MSU crystals deposits measured by dual-energy CT (DECT). Secondly, we found that nail urate can reflect changes in urate levels in the body during urate lowering therapy through a 3-month follow-up study. Our results provide the possibility of quantification of urate in human fingernails as a non-invasive alternative for assessing MSU crystals deposits in gout.


2020 ◽  
Vol 2020 (14) ◽  
pp. 293-1-293-7
Author(s):  
Ankit Manerikar ◽  
Fangda Li ◽  
Avinash C. Kak

Dual Energy Computed Tomography (DECT) is expected to become a significant tool for voxel-based detection of hazardous materials in airport baggage screening. The traditional approach to DECT imaging involves collecting the projection data using two different X-ray spectra and then decomposing the data thus collected into line integrals of two independent characterizations of the material properties. Typically, one of these characterizations involves the effective atomic number (Zeff) of the materials. However, with the X-ray spectral energies typically used for DECT imaging, the current best-practice approaches for dualenergy decomposition yield Zeff values whose accuracy range is limited to only a subset of the periodic-table elements, more specifically to (Z < 30). Although this estimation can be improved by using a system-independent ρe — Ze (SIRZ) space, the SIRZ transformation does not efficiently model the polychromatic nature of the X-ray spectra typically used in physical CT scanners. In this paper, we present a new decomposition method, AdaSIRZ, that corrects this shortcoming by adapting the SIRZ decomposition to the entire spectrum of an X-ray source. The method reformulates the X-ray attenuation equations as direct functions of (ρe, Ze) and solves for the coefficients using bounded nonlinear least-squares optimization. Performance comparison of AdaSIRZ with other Zeff estimation methods on different sets of real DECT images shows that AdaSIRZ provides a higher output accuracy for Zeff image reconstructions for a wider range of object materials.


2016 ◽  
Author(s):  
Christian David Trujillo-Bastidas ◽  
Olivia Amanda García-Garduño ◽  
José Manuel Lárraga-Gutiérrez ◽  
Arnulfo Martínez-Dávalos ◽  
Mercedes Rodríguez-Villafuerte

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ya-Fei Liu ◽  
Sheng-Hao Tu ◽  
Zhe Chen ◽  
Yu Wang ◽  
Yong-Hong Hu ◽  
...  

Simiao pill, a Chinese herbal formula containing four herbs, has been used in the treatment of gouty arthritis for many years. The aim of this study was to explore the effects of modified Simiao decoction (MSD) on IL-1βand TNFαsecretion in monocytic THP-1 cells with monosodium urate (MSU) crystals-induced inflammation. The MSU crystals-induced inflammation model in THP-1 cells was successfully established by the stimulation of phorbol 12-myristate 13-acetate (PMA) and MSU crystals. Then, the MSD-derived serum or control serum extracted from rat was administered to different treatment groups. The morphology of MSU crystals and THP-1 cells was observed. IL-1βand TNFαprotein expression in supernatant of THP-1 cells were determined by ELISA. Our data demonstrated that MSU crystals induced time-dependent increase of IL-1βand TNFα. Moreover, MSD significantly decreased IL-1βrelease in THP-1 cells with MSU crystals-induced inflammation. These results suggest that MSD is promising in the treatment of MSU crystals-induced inflammation in THP-1 cells. MSD may act as an anti-IL-1 agent in treating gout. The underlying mechanism may be related to NALP3 inflammasome which needs to be validated in future studies.


2017 ◽  
Vol 209 (4) ◽  
pp. W221-W230 ◽  
Author(s):  
Achille Mileto ◽  
Brian C. Allen ◽  
Jason A. Pietryga ◽  
Alfredo E. Farjat ◽  
Jessica G. Zarzour ◽  
...  

2022 ◽  
Author(s):  
Nicola Dalbeth ◽  
Mariam Alhilali ◽  
Peter Riordan ◽  
Ravi Narang ◽  
Ashika Chhana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document