scholarly journals Early embryogenesis and organogenesis in the annelid Owenia fusiformis

EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Allan Martín Carrillo-Baltodano ◽  
Océane Seudre ◽  
Kero Guynes ◽  
José María Martín-Durán

Abstract Background Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored. Results Owenia fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately 5 h post-fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes 4 h later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorso-posterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin-1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide+ neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~ 3 weeks post-fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally. Conclusions Owenia fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more elaborated than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.

2021 ◽  
Author(s):  
Allan Martín Carrillo-Baltodano ◽  
Océane Seudre ◽  
Kero Guynes ◽  
Jose M Martin-Duran

Abstract Background : Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis , a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored.Results : O. fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately five hours post fertilization (hpf) at 19 ºC. Gastrulation occurs via invagination and completes four hours later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorsoposterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin1 ) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide + neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~3 weeks post fertilization at 15 ºC, when a conspicuous juvenile rudiment has formed ventrally.Conclusions : O. fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more complex than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.


2021 ◽  
Author(s):  
Allan Martín Carrillo-Baltodano ◽  
Océane Seudre ◽  
Kero Guynes ◽  
José María Martín-Durán

AbstractBackgroundAnnelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored.ResultsO. fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately five hours post fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes four hours later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorsoposterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide+ neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ∼3 weeks post fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally.ConclusionsO. fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more complex than previously recognised and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yongxin Li ◽  
Akihito Omori ◽  
Rachel L. Flores ◽  
Sheri Satterfield ◽  
Christine Nguyen ◽  
...  

AbstractEchinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya.


2017 ◽  
Vol 95 (3) ◽  
pp. 183-192 ◽  
Author(s):  
Ariane Comeau ◽  
Cory D. Bishop ◽  
Christopher B. Cameron

Crinoids are the oldest living class of echinoderm and sister group to the remaining eleutherozoan clade and so are key to discussions on the evolution and development of the echinoderm skeleton. Here we present the intraspecific variation of ossicle development of the feather star Florometra serratissima (A.H. Clark, 1907) during its three larval stages: doliolaria, cystidean, and early pentacrinoid. To induce settlement, larvae were cultured on a sea table in glass bowls containing coralline algae. The soft tissues of 60 larvae were dissolved to isolate and to observe the ossicles with compound microscopy and scanning electron microscopy. From the late doliolaria stage to 56-day-old pentacrinoids, a total of four types of ossicle developed: oral plates, basal plates, columnar stalk ossicles, and an attachment disk. Occasionally, an additional plate was found under the basal plates, which may represent a vestigial infrabasal plate. The shape of the attachment disk was plastic to accommodate the substrate. Crinoid ossicle development is variable in size, shape, and number, and the timing of development is asynchronous; traits that may have contributed to the early rapid radiation and phenotypic disparity of echinoderms.


2015 ◽  
Author(s):  
Felipe Zapata ◽  
Freya E Goetz ◽  
Stephen A Smith ◽  
Mark Howison ◽  
Stefan Siebert ◽  
...  

Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.


2019 ◽  
Author(s):  
Johannes Girstmair ◽  
Maximilian J. Telford

AbstractBackgroundSpiral cleavage is a conserved early developmental mode found in several phyla of Lophotrochozoans with highly diverse adult body plans. While the cleavage pattern has clearly been broadly conserved, it has also undergone many modifications in various taxa. The precise mechanisms of how different adaptations have altered the ancestral spiral cleavage pattern is an important ongoing evolutionary question and adequately answering this question requires obtaining a broad developmental knowledge of different spirally cleaving taxa.In flatworms (Platyhelminthes), the spiral cleavage program has been lost or severely modified in most taxa. Polyclad flatworms, however, have retained the pattern up to the 32-cell stage. Here we study early embryogenesis of the cotylean polyclad flatwormMaritigrella crozierito investigate how closely this species follows the canonical spiral cleavage pattern and to discover any potential deviations from it.ResultsUsing live imaging recordings and 3D reconstructions of embryos, we give a detailed picture of the events that occur during spiral cleavage inM. crozieri. We suggest, contrary to previous observations, that the 4-cell stage is a product of unequal cleavages. We show that that the formation of third and fourth micromere quartets are accompanied by strong blebbing events; blebbing also accompanies the formation of micromere 4d. We find an important deviation from the canonical pattern of cleavages with clear evidence that micromere 4d follows an atypical cleavage pattern, so far exclusively found in polyclad flatworms.ConclusionsOur findings highlight that early development inM. crozierideviates in several important aspects from the canonical spiral cleavage pattern. We suggest that some of our observations extend to polyclad flatworms in general as they have been described in both suborders of the Polycladida, the Cotylea and Acotylea.


1983 ◽  
Vol 63 (1) ◽  
pp. 135-146
Author(s):  
H.A. Horner ◽  
H.C. Macgregor

Cell volume has been determined in 18 species of amphibian, ranging in C value from 1.4 pg to 62 pg DNA. There is a strong linear relationship between C value and both erythrocyte volume and erythrocyte nuclear volume. We have collected data on the timing of early embryogenesis from fertilization of the egg to the hatching tadpole in some amphibians ranging in C value from 1.4 pg to 83 pg. The species with large genomes take up to 24 times longer to reach a comparable state of development. Polyploid species develop faster than closely related diploid species. These data are discussed in relation to genome expansion and increase in cell cycle time as factors in the evolution of the Amphibia.


2015 ◽  
Vol 28 (4) ◽  
pp. 203 ◽  
Author(s):  
Xénia A. Weber ◽  
Alexander N. Schmidt-Lebuhn

The Australasian clade of Gnaphalieae (Asteraceae) is an ecologically diverse group of species whose generic limits and phylogenetic relationships are still partly unresolved. Previous studies including hybridisation trials, morphological characterisation and preliminary phylogenetic analyses within the Gnaphalieae have suggested that two genera, namely, Waitzia and Leucochrysum, require further investigation into their generic boundaries. To explore the phylogenetic relationships of both genera, the present study used a combination of morphological and molecular approaches. The character traits of herbarium specimens from 14 species and six infraspecific taxa of Waitzia, Leucochrysum and Anemocarpa were examined. Chloroplast (psbA–trnH) and nuclear ribosomal ITS and ETS sequences were generated for phylogenetic analysis. Our findings support Waitzia in its current circumscription as a monophyletic group, whereas Leucochrysum was found to be polyphyletic. Leucochrysum fitzgibbonii was found to be the sister group of Waitzia and shares characters of the involucral bracts, indumentum and growth habit with that genus. The species is formally transferred to the genus Waitzia as W. fitzgibbonii.


2021 ◽  
Author(s):  
Willy De Mattia ◽  
Susanne Reier ◽  
Elisabeth Haring

The taxonomy and systematics of the door snail genus Siciliaria was revised based on an integrative approach including a comprehensive genital anatomical investigation, which was combined with shell morphology and DNA sequence data (mitochondrial COI, nuclear ITS2 sequences). The genital morphology of 118 specimens of 21 taxa from 43 populations was investigated and a new general description of the genital morphology of the genus is provided. Additionally, 26 specimens of 14 taxa of additional 5 genera (sensu Bank & Neubert, 2019) of Alopiinae (Mauritanica, Charpentieria, Stigmatica, Gibbularia, Papillifera, and the here reintroduced genus Tirolica) were included in the genetic analyses. In the phylogenetic tree based on COI sequences, the species of the genus Siciliaria s.l. from northwestern Sicily were found within two separate highly supported main clades. In the tree based on the nuclear ITS2 marker sequence, resolution was considerably lower, albeit, the tree partially confirmed the mitochondrial tree. We re-introduced Sicania Tomlin, 1929 (corresponding to main clade II in the tree). Siciliaria scarificata did not appear in one of the two main clades but was the sister group of Mauretanica perinni polygyra. Concerning monophyly of species, only the widely distributed S. calcarae was paraphyletic in the COI tree, a finding that has to be investigated further with multiple marker sequences. For the other genera (Charpentieria, Stigmatica, Gibbularia, Papillifera and Tirolica) we provide here also detailed descriptions of the genital anatomy of 51 taxa for a total amount of 191 dissected specimens. Several of these taxa could be included in the phylogenetic analysis and were found in several quite distinct lineages. Although the taxon sampling of these taxa was far from being complete, the comprehensive data provided here (concerning morphology, genetics and distribution) provide first insights into this diverse group of clausiliid taxa.


Sign in / Sign up

Export Citation Format

Share Document