scholarly journals Low-frequency electromagnetic fields combined with tissue engineering techniques accelerate intervertebral fusion

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Chunwei Huang ◽  
Tian Ma ◽  
Jiachen Wang ◽  
Wenbin Liu ◽  
...  

Abstract Background Intervertebral fusion is the most common surgery to treat lumbar degenerative disease (LDD). And the graft material used in the operation is derived from the iliac crest to promote fusion. However, autografts possess the fatal disadvantage of lack of source. Therefore, economical and practical bone substitutes are urgently needed to be developed. Sinusoidal electromagnetic fields (EMF) combined with tissue engineering techniques may be an appropriate way to promote intervertebral fusion. Methods In this research, porous scaffolds made of polycaprolactone (PCL) and nano-hydroxyapatite (nHA) were used as cell carriers. Then, the scaffolds loaded with bone marrow mesenchymal stem cells (BMSCs) were treated with sinusoidal electromagnetic field and the osteogenic capability of BMSCs was tested later. In addition, an intervertebral disc of the tail vertebra of the rat was removed to construct a spinal intervertebral fusion model with a cell-scaffold implanted. The intervertebral fusion was observed and analyzed by X-ray, micro-CT, and histological methods. Results BMSCs stimulated by EMF possess splendid osteogenic capability under an osteogenic medium (OM) in vitro. And the conditioned medium of BMSCs treated with EMF can further promote osteogenic differentiation of the primitive BMSCs. Mechanistically, EMF regulates BMSCs via BMP/Smad and mitogen-activated protein kinase (MAPK)-associated p38 signaling pathways. In vivo experiments revealed that the scaffold loaded with BMSCs stimulated by EMF accelerated intervertebral fusion successfully. Conclusion In summary, EMF accelerated intervertebral fusion by improving the osteogenic capacity of BMSCs seeded on scaffolds and might boost the paracrine function of BMSCs to promote osteogenic differentiation of the homing BMSCs at the injured site. EMF combined with tissue engineering techniques may become a new clinical treatment for LDD.

2012 ◽  
Vol 91 (7) ◽  
pp. 642-650 ◽  
Author(s):  
K. Moharamzadeh ◽  
H. Colley ◽  
C. Murdoch ◽  
V. Hearnden ◽  
W.L. Chai ◽  
...  

Advances in tissue engineering have permitted the three-dimensional (3D) reconstruction of human oral mucosa for various in vivo and in vitro applications. Tissue-engineered oral mucosa have been further optimized in recent years for clinical applications as a suitable graft material for intra-oral and extra-oral repair and treatment of soft-tissue defects. Novel 3D in vitro models of oral diseases such as cancer, Candida, and bacterial invasion have been developed as alternatives to animal models for investigation of disease phenomena, their progression, and treatment, including evaluation of drug delivery systems. The introduction of 3D oral mucosal reconstructs has had a significant impact on the approaches to biocompatibility evaluation of dental materials and oral healthcare products as well as the study of implant-soft tissue interfaces. This review article discusses the recent advances in tissue engineering and applications of tissue-engineered human oral mucosa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lan Ma ◽  
Yijun Yu ◽  
Hanxiao Liu ◽  
Weibin Sun ◽  
Zitong Lin ◽  
...  

AbstractThe repair of skeletal defects in maxillofacial region remains an intractable problem, the rising technology of bone tissue engineering provides a new strategy to solve it. Scaffolds, a crucial element of tissue engineering, must have favorable biocompatibility as well as osteoinductivity. In this study, we prepared berberine/polycaprolactone/collagen (BBR/PCL/COL) scaffolds with different concentrations of berberine (BBR) (25, 50, 75 and 100 μg/mL) through electrospinning. The influence of dosage on scaffold morphology, cell behavior and in vivo bone defect repair were systematically studied. The results indicated that scaffolds could release BBR stably for up to 27 days. Experiments in vitro showed that BBR/PCL/COL scaffolds had appropriate biocompatibility in the concentration of 25–75 μg/mL, and 50 and 75 μg/mL scaffolds could significantly promote osteogenic differentiation of dental pulp stem cells. Scaffold with 50 μg/mL BBR was implanted into the critical bone defect of rats to evaluate the ability of bone repair in vivo. It was found that BBR/PCL/COL scaffold performed more favorable than polycaprolactone/collagen (PCL/COL) scaffold. Overall, our study is the first to evaluate the capability of in vivo bone repair of BBR/PCL/COL electrospun scaffold. The results indicate that BBR/PCL/COL scaffold has prospective potential for tissue engineering applications in bone regeneration therapy.


2021 ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

Abstract Variety of bone-related diseases and injures and limitations of traditional regeneration methods need to introduce new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implant in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds and evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, mechanical and chemical properties of scaffolds were characterized and showed three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. rGO coating enhanced mechanical strength of Col-rGO scaffolds compared with Col scaffolds by 2.8 folds. Furthermore, Col-rGO scaffolds confirmed that graphene addition not only did not any cytotoxic effects but also enhanced human bone marrow-derived mesenchymal stem cells (hBMSCs) viability and proliferation with 3D adherence and expansion. Finally, scaffolds implantation into rabbit cranial bone defect for 12 weeks showed increased bone formation, confirmed by Hematoxylin-Eosin (H&E) and alizarin red staining. Altogether, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


2021 ◽  
Author(s):  
Maxime Leblanc Latour ◽  
Maryam Tarar ◽  
Ryan J. Hickey ◽  
Charles M. Cuerrier ◽  
Isabelle Catelas ◽  
...  

Plant-derived cellulose biomaterials have recently been utilized in several tissue engineering applications. These naturally-derived cellulose scaffolds have been shown to be highly biocompatible in vivo, possess structural features of relevance to several tissues, and support mammalian cell invasion and proliferation. Recent work utilizing decellularized apple hypanthium tissue has shown that it possesses a pore size similar to trabecular bone and can successfully host osteogenic differentiation. In the present study, we further examined the potential of apple-derived cellulose scaffolds for bone tissue engineering (BTE) and analyzed their mechanical properties in vitro and in vivo. MC3T3-E1 pre-osteoblasts were seeded in cellulose scaffolds. Following chemically-induced osteogenic differentiation, scaffolds were evaluated for mineralization and for their mechanical properties. Alkaline phosphatase and Alizarin Red staining confirmed the osteogenic potential of the scaffolds. Histological analysis of the constructs revealed cell invasion and mineralization throughout the constructs. Furthermore, scanning electron microscopy demonstrated the presence of mineral aggregates on the scaffolds after culture in differentiation medium, and energy-dispersive spectroscopy confirmed the presence of phosphate and calcium. However, although the Young′s modulus significantly increased after cell differentiation, it remained lower than that of healthy bone tissue. Interestingly, mechanical assessment of acellular scaffolds implanted in rat calvaria defects for 8 weeks revealed that the force required to push out the scaffolds from the surrounding bone was similar to that of native calvarial bone. In addition, cell infiltration and extracellular matrix deposition were visible within the implanted scaffolds. Overall, our results confirm that plant-derived cellulose is a promising candidate for BTE applications. However, the discrepancy in mechanical properties between the mineralized scaffolds and healthy bone tissue may limit their use to low load-bearing applications. Further structural re-engineering and optimization to improve the mechanical properties may be required for load-bearing applications.


Author(s):  
Qingwei Zhang ◽  
Wei Zhang ◽  
Jephte Augustin ◽  
Donggang Yao ◽  
David M. Wootton ◽  
...  

Tissue engineering is a rapidly growing interdisciplinary field which offers a promising new technology to create artificial constructs for regeneration of tissues. One important aspect of bone tissue engineering is to build scaffolds with interconnected 3-D porous structure in order to mimic natural bone architecture. In this work, co-continuous micro-porous scaffolds made of Poly-L-lactic acid (PLLA) with 50% porosity and PLLA/hydroxyapatite (HA) with 40% porosity were prepared by injection molding of an immiscible polymer blend with polystyrene as sacrificial material. The sacrificial material was then removed by solvent leaching with cyclohexane. The porous PLLA/HA matrix supported murine osteoblast (7F2) cell growth for up to 9 days, suggesting that that the introduction and replacement of sacrificial material had no negative effects on cell proliferation. In vitro studies also indicate an increase in mineralization by osteoblasts cultured on the porous structure, as compared to cells cultured on solid scaffold. One month subcutaneous degradation tests showed a mild foreign body reaction and complete fibrous encapsulation. Following surgical implantation of the scaffolds into circular defects in canine tibia, we observed after 12 weeks new bone tissue grew into the porous structures. Taken together our data suggest that interconnected porous structures with good cytocompatibility and increased mineralization in vitro paired with enhanced osteoinductive properties in vivo suggest a great potential of the porous PLLA/HA for inducing and sustaining bone tissue repair.


2012 ◽  
Vol 2 (3) ◽  
pp. 366-377 ◽  
Author(s):  
Zhen Pan ◽  
Jiandong Ding

Porous scaffolds fabricated from biocompatible and biodegradable polymers play vital roles in tissue engineering and regenerative medicine. Among various scaffold matrix materials, poly(lactide- co -glycolide) (PLGA) is a very popular and an important biodegradable polyester owing to its tunable degradation rates, good mechanical properties and processibility, etc. This review highlights the progress on PLGA scaffolds. In the latest decade, some facile fabrication approaches at room temperature were put forward; more appropriate pore structures were designed and achieved; the mechanical properties were investigated both for dry and wet scaffolds; a long time biodegradation of the PLGA scaffold was observed and a three-stage model was established; even the effects of pore size and porosity on in vitro biodegradation were revealed; the PLGA scaffolds have also been implanted into animals, and some tissues have been regenerated in vivo after loading cells including stem cells.


2015 ◽  
Vol 3 (42) ◽  
pp. 8375-8382 ◽  
Author(s):  
Young Min Shin ◽  
Wan-Geun La ◽  
Min Suk Lee ◽  
Hee Seok Yang ◽  
Youn-Mook Lim

A heparin conjugated fibrous particle resembling the structure of an extracellular matrix was developed. The BMP-2 loaded particles promoted osteogenic differentiation and healing of a bone defect, in vitro and in vivo.


2018 ◽  
Vol 65 (1) ◽  
pp. 37-44
Author(s):  
Dijana Trišić ◽  
Vukoman Jokanović ◽  
Đorđe Antonijević ◽  
Dejan Marković

Summary Stem cells have shown great potential for in vitro tissue engineering, regenerative medicine, cell therapy and pharmaceutical applications. All these applications, especially in clinical trials, will require guided production of high-quality cells. Traditional culture techniques and applications have been performed for the majority of primary and established cell lines and standardized for various analyses. Still, these culture conditions are unable to mimic dynamic and specialized three-dimensional microenvironment of the stem cells’ niche from in vivo conditions. In an attempt to provide biomimetic microenvironments for stem cells in vitro growth, three-dimensional culture techniques have been developed. In our study advantages of newly developed porous scaffolds as the most promising in vitro imitation of niche that provides physical support, enables cell growth, regeneration and neovascularization, while they are replaced in time with newly created tissue was explained. Furthermore, dynamic cultivation techniques have been described, as new way of cell culturing that will be the main subject of our future research. In that manner, by developing an optimal dynamic culturing method, high-quality new cells and tissues would be possible to obtain, for any future clinical application.


Nanoscale ◽  
2020 ◽  
Vol 12 (48) ◽  
pp. 24437-24449
Author(s):  
Linna Zhong ◽  
Junyu Chen ◽  
Zhiyong Ma ◽  
Hao Feng ◽  
Song Chen ◽  
...  

A nanoZIF-8 modified porous composite scaffold was fabricated via extrusion-based 3D printing technology, which could promote osteogenesis in vitro and accelerate bone regeneration in vivo.


2019 ◽  
Vol 7 (4) ◽  
pp. 1565-1573 ◽  
Author(s):  
Xiao-Yuan Peng ◽  
Min Hu ◽  
Fang Liao ◽  
Fan Yang ◽  
Qin-Fei Ke ◽  
...  

La-MCS/CTS scaffolds promoted the proliferation and osteogenic differentiation of rBMSCs in vitro and bone regeneration in vivo.


Sign in / Sign up

Export Citation Format

Share Document