Graphene Coated Scaffold for Bone Tissue Engineering: Physicochemical and Osteogenic Characterizations
Abstract Variety of bone-related diseases and injures and limitations of traditional regeneration methods need to introduce new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implant in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds and evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, mechanical and chemical properties of scaffolds were characterized and showed three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. rGO coating enhanced mechanical strength of Col-rGO scaffolds compared with Col scaffolds by 2.8 folds. Furthermore, Col-rGO scaffolds confirmed that graphene addition not only did not any cytotoxic effects but also enhanced human bone marrow-derived mesenchymal stem cells (hBMSCs) viability and proliferation with 3D adherence and expansion. Finally, scaffolds implantation into rabbit cranial bone defect for 12 weeks showed increased bone formation, confirmed by Hematoxylin-Eosin (H&E) and alizarin red staining. Altogether, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.