scholarly journals A dual cardiomyocyte reporter model derived from human pluripotent stem cells

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuqian Jiang ◽  
Xiaoping Bao ◽  
Xiaojun Lance Lian

AbstractCardiovascular diseases (CVD) remain the leading cause of death in the USA. Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) provide a valuable cell source for regenerative therapy, disease modeling, and drug screening. Here, we established a hPSC line integrated with a mCherry fluorescent protein driven by the alpha myosin heavy chain (aMHC) promoter, which could be used to purify CMs based on the aMHC promoter activity in these cells. Combined with a fluorescent voltage indicator, ASAP2f, we achieved a dual reporter CM platform, which enables purification and characterization of CM subtypes and holds great potential for disease modeling and drug discovery of CVD.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1312 ◽  
Author(s):  
Joffrey Mianné ◽  
Chloé Bourguignon ◽  
Chloé Nguyen Van ◽  
Mathieu Fieldès ◽  
Amel Nasri ◽  
...  

Recent advances in genome engineering based on the CRISPR/Cas9 technology have revolutionized our ability to manipulate genomic DNA. Its use in human pluripotent stem cells (hPSCs) has allowed a wide range of mutant cell lines to be obtained at an unprecedented rate. The combination of these two groundbreaking technologies has tremendous potential, from disease modeling to stem cell-based therapies. However, the generation, screening and molecular characterization of these cell lines remain a cumbersome and multi-step endeavor. Here, we propose a pipeline of strategies to efficiently generate, sub-clone, and characterize CRISPR/Cas9-edited hPSC lines in the function of the introduced mutation (indels, point mutations, insertion of large constructs, deletions).


2016 ◽  
Vol 5 (22) ◽  
pp. 2951-2958 ◽  
Author(s):  
Ken-ichiro Kamei ◽  
Yoshie Koyama ◽  
Yumie Tokunaga ◽  
Yasumasa Mashimo ◽  
Momoko Yoshioka ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2746
Author(s):  
Nasa Xu ◽  
Jianbo Wu ◽  
Jose L. Ortiz-Vitali ◽  
Yong Li ◽  
Radbod Darabi

Advancements in reprogramming somatic cells into induced pluripotent stem cells (iPSCs) have provided a strong framework for in vitro disease modeling, gene correction and stem cell-based regenerative medicine. In cases of skeletal muscle disorders, iPSCs can be used for the generation of skeletal muscle progenitors to study disease mechanisms, or implementation for the treatment of muscle disorders. We have recently developed an improved directed differentiation method for the derivation of skeletal myogenic progenitors from hiPSCs. This method allows for a short-term (2 weeks) and efficient skeletal myogenic induction (45–65% of the cells) in human pluripotent stem cells (ESCs/iPSCs) using small molecules to induce mesoderm and subsequently myotomal progenitors, without the need for any gene integration or modification. After initial differentiation, skeletal myogenic progenitors can be purified from unwanted cells using surface markers (CD10+CD24−). These myogenic progenitors have been extensively characterized using in vitro gene expression/differentiation profiling as well as in vivo engraftment studies in dystrophic (mdx) and muscle injury (VML) rodent models and have been proven to be able to engraft and form mature myofibers as well as seeding muscle stem cells. The current protocol describes a detailed, step-by-step guide for this method and outlines important experimental details and troubleshooting points for its application in any human pluripotent stem cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Balboa ◽  
Diepiriye G. Iworima ◽  
Timothy J. Kieffer

Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.


Sign in / Sign up

Export Citation Format

Share Document