scholarly journals Human Pluripotent Stem Cells to Model Islet Defects in Diabetes

2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Balboa ◽  
Diepiriye G. Iworima ◽  
Timothy J. Kieffer

Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.

2021 ◽  
Author(s):  
Rabea Dettmer ◽  
Isabell Niwolik ◽  
Ilir Mehmeti ◽  
Anne Jörns ◽  
Ortwin Naujok

AbstractDifferentiation of human pluripotent stem cells into insulin-producing stem cell-derived beta cells harbors great potential for research and therapy of diabetes. The SOX9 gene plays a crucial role during development of the pancreas and particularly in the development of insulin-producing cells as SOX9+ cells form the source for NEUROG3+ endocrine progenitor cells. For the purpose of easy monitoring of differentiation efficiencies into pancreatic progenitors and insulin-producing cells, we generated new reporter lines by knocking in a P2A-H-2Kk-F2A-GFP2 reporter genes into the SOX9 locus and a P2A-mCherry reporter gene into the INS locus mediated by CRISPR/CAS9-technology. The knock-ins enable co-expression of the endogenous genes and reporter genes, report the endogenous gene expression and enable the purification of pancreatic progenitors and insulin-producing cells using FACS or MACS. Using these cell lines we established a new differentiation protocol geared towards SOX9+ cells to efficiently drive human pluripotent stem cells into glucose-responsive beta cells.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Zaniar Ghazizadeh ◽  
Seyedeh Faranak Fattahi ◽  
Mehdi Sharifi-tabar ◽  
Shahab Mirshahvaladi ◽  
Parisa Shabani ◽  
...  

The cardiac conduction system is a complex network of cells that together orchestrate the rhythmic and coordinated depolarization of the heart. Dysfunction of the cardiac conduction system plays a central role in the pathogenesis of arrhythmia. While much progress has been made understanding cardiomyocyte differentiation, the molecular mechanisms regulating the specification and patterning of cells that form this conductive network is largely unknown. The LIM-homeodomain transcription factor ISL1 is highly expressed in the secondary heart field (SHF) progenitor population that makes a substantial contribution to the developing heart, comprising most cells in the right ventricle, both atria and pacemaker cells. Pacemaker cells comprise the most proximal component of the cardiac conduction system, which have been proposed as the source of most arrhythmogenic events. Their dominance on other spontaneous beating cell types makes them a suitable target for pharmacologic compounds, making access to this cell lineage necessary for the study of new therapeutic agents. To identify the signaling pathways that control the differentiation of human embryonic stem cell (hESC)-derived SHF cells into pacemaker cells, we performed RNA sequencing to compare the hESC-derived ISL1 + population, non-enriched population and undifferentiated hESCs. Furthermore, using a small molecule screen we identified compounds that can improve differentiation of hESCs toward pacemaker cells. Pathway analysis identified the Wnt pathway as the most significant regulator of SHF specification. Further differentiation of human pluripotent stem cells by stage-specific activation of BMP and WNT signaling pathways resulted in phenotypic pacemaker cells, which display morphological characteristics. More than 80% of these cells stained positively for HCN4, Contactin2(CNTN2) and GATA6, key markers of pacemaker cells. The differentiated cells express pacemaker markers, including CNTN2, TBX2, TBX3, HCN4, TBX18, GATA6 indicated by qRT-PCR. They show inward potassium currents through HCN channels in patch clamp experiments. Our data provides a new strategy to obtain human cardiac conduction cells in large scale for disease modeling, drug screening and cell therapy.


2020 ◽  
Vol 52 (9) ◽  
pp. 931-938 ◽  
Author(s):  
Yicheng Long ◽  
Taeyoung Hwang ◽  
Anne R. Gooding ◽  
Karen J. Goodrich ◽  
John L. Rinn ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2746
Author(s):  
Nasa Xu ◽  
Jianbo Wu ◽  
Jose L. Ortiz-Vitali ◽  
Yong Li ◽  
Radbod Darabi

Advancements in reprogramming somatic cells into induced pluripotent stem cells (iPSCs) have provided a strong framework for in vitro disease modeling, gene correction and stem cell-based regenerative medicine. In cases of skeletal muscle disorders, iPSCs can be used for the generation of skeletal muscle progenitors to study disease mechanisms, or implementation for the treatment of muscle disorders. We have recently developed an improved directed differentiation method for the derivation of skeletal myogenic progenitors from hiPSCs. This method allows for a short-term (2 weeks) and efficient skeletal myogenic induction (45–65% of the cells) in human pluripotent stem cells (ESCs/iPSCs) using small molecules to induce mesoderm and subsequently myotomal progenitors, without the need for any gene integration or modification. After initial differentiation, skeletal myogenic progenitors can be purified from unwanted cells using surface markers (CD10+CD24−). These myogenic progenitors have been extensively characterized using in vitro gene expression/differentiation profiling as well as in vivo engraftment studies in dystrophic (mdx) and muscle injury (VML) rodent models and have been proven to be able to engraft and form mature myofibers as well as seeding muscle stem cells. The current protocol describes a detailed, step-by-step guide for this method and outlines important experimental details and troubleshooting points for its application in any human pluripotent stem cells.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2698
Author(s):  
Ishnoor Sidhu ◽  
Sonali P. Barwe ◽  
Raju K. Pillai ◽  
Anilkumar Gopalakrishnapillai

In vitro modeling of hematological malignancies not only provides insights into the influence of genetic aberrations on cellular and molecular mechanisms involved in disease progression but also aids development and evaluation of therapeutic agents. Owing to their self-renewal and differentiation capacity, induced pluripotent stem cells (iPSCs) have emerged as a potential source of short in supply disease-specific human cells of the hematopoietic lineage. Patient-derived iPSCs can recapitulate the disease severity and spectrum of prognosis dictated by the genetic variation among patients and can be used for drug screening and studying clonal evolution. However, this approach lacks the ability to model the early phases of the disease leading to cancer. The advent of genetic editing technology has promoted the generation of precise isogenic iPSC disease models to address questions regarding the underlying genetic mechanism of disease initiation and progression. In this review, we discuss the use of iPSC disease modeling in hematological diseases, where there is lack of patient sample availability and/or difficulty of engraftment to generate animal models. Furthermore, we describe the power of combining iPSC and precise gene editing to elucidate the underlying mechanism of initiation and progression of various hematological malignancies. Finally, we discuss the power of iPSC disease modeling in developing and testing novel therapies in a high throughput setting.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lei Zhang ◽  
Ke Pu ◽  
Xiaojun Liu ◽  
Sarah Da Won Bae ◽  
Romario Nguyen ◽  
...  

Liver diseases are a major health concern globally, and are associated with poor survival and prognosis of patients. This creates the need for patients to accept the main alternative treatment of liver transplantation to prevent progression to end-stage liver disease. Investigation of the molecular mechanisms underpinning complex liver diseases and their pathology is an emerging goal of stem cell scope. Human induced pluripotent stem cells (hiPSCs) derived from somatic cells are a promising alternative approach to the treatment of liver disease, and a prospective model for studying complex liver diseases. Here, we review hiPSC technology of cell reprogramming and differentiation, and discuss the potential application of hiPSC-derived liver cells, such as hepatocytes and cholangiocytes, in refractory liver-disease modeling and treatment, and drug screening and toxicity testing. We also consider hiPSC safety in clinical applications, based on genomic and epigenetic alterations, tumorigenicity, and immunogenicity.


Sign in / Sign up

Export Citation Format

Share Document