scholarly journals Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rishi Man Chugh ◽  
Hang-soo Park ◽  
Abdeljabar El Andaloussi ◽  
Amro Elsharoud ◽  
Sahar Esfandyari ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-age women. Excessive inflammation and elevated androgen production from ovarian theca cells are key features of PCOS. Human bone marrow mesenchymal stem cells (BM-hMSC) and their secreted factors (secretome) exhibit robust anti-inflammatory capabilities in various biological systems. We evaluated the therapeutic efficacy of BM-hMSC and its secretome in both in vitro and in vivo PCOS models. Methods For in vitro experiment, we treated conditioned media from BM-hMSC to androgen-producing H293R cells and analyzed androgen-producing gene expression. For in vivo experiment, BM-hMSC were implanted into letrozole (LTZ)-induced PCOS mouse model. BM-hMSC effect in androgen-producing cells or PCOS model mice was assessed by monitoring cell proliferation (immunohistochemistry), steroidogenic gene expression (quantitative real-time polymerase chain reaction [qRT-PCR] and Western blot, animal tissue assay (H&E staining), and fertility by pup delivery. Results BM-hMSC significantly downregulate steroidogenic gene expression, curb inflammation, and restore fertility in treated PCOS animals. The anti-inflammatory cytokine interleukin-10 (IL-10) played a key role in mediating the effects of BM-hMSC in our PCOS models. We demonstrated that BM-hMSC treatment was improved in metabolic and reproductive markers in our PCOS model and able to restore fertility. Conclusion Our study demonstrates for the first time the efficacy of intra-ovarian injection of BM-hMSC or its secretome to treat PCOS-related phenotypes, including both metabolic and reproductive dysfunction. This approach may represent a novel therapeutic option for women with PCOS. Our results suggest that BM-hMSC can reverse PCOS-induced inflammation through IL-10 secretion. BM-hMSC might be a novel and robust therapeutic approach for PCOS treatment.

2021 ◽  
Author(s):  
Rishi Man Chugh ◽  
Hang-soo Park ◽  
Abdeljabar El Andaloussi ◽  
Amro Elsharoud ◽  
Sahar Esfandyari ◽  
...  

Abstract Background: Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-age women. Excessive inflammation and elevated androgen production from ovarian theca cells are key features of PCOS. Human bone marrow mesenchymal stem cells (BM-hMSC) and their secreted factors (secretome) exhibit robust anti-inflammatory capabilities in various biological systems. We evaluated the therapeutic efficacy of BM-hMSC and its secretome in both in vitro and in vivo PCOS models.Methods: For in vitro experiment, we treated conditioned media from BM-hMSC to androgen producing H293R cells, and analyzed androgen producing gene expression. For in vivo experiment, BM-hMSC were implanted into Letrozole (LTZ) induced mouse PCOS model. BM-hMSC effect in androgen producing cells or PCOS model mice was assessed by monitoring cell proliferation (immunohistochemistry), steroidogenic gene expression (quantitative real-time polymerase chain reaction [qRT-PCR] and Western blot, animal tissue assay (H&E staining), and fertility by pup delivery.Results: BM-hMSC significantly downregulate steroidogenic gene expression, curb inflammation, and restore fertility in treated PCOS animals. The anti-inflammatory cytokine interleukin-10 (IL-10) played a key role in mediating the effects of BM-hMSC in our PCOS models. We demonstrated that BM-hMSC treatment was improve in metabolic and reproductive markers in our PCOS model and able to restore fertility. Conclusion: Our study demonstrates for the first time the efficacy of intra-ovarian injection of BM-hMSC or its secretome to treat PCOS-related phenotypes, including both metabolic and reproductive dysfunction. This approach may represent a novel therapeutic option for women with PCOS. Our results suggest that BM-hMSC can reverse PCOS-induced inflammation through IL-10 secretion. BM-hMSC might be a novel and robust therapeutic approach for PCOS treatment.


Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 729-738 ◽  
Author(s):  
Dominique Berrebi ◽  
Stefano Bruscoli ◽  
Nicolas Cohen ◽  
Arnaud Foussat ◽  
Graziella Migliorati ◽  
...  

Glucocorticoids and interleukin 10 (IL-10) prevent macrophage activation. In murine lymphocytes, glucocorticoids induce expression of glucocorticoid-induced leucine zipper (GILZ), which prevents the nuclear factor κB (NF-κB)–mediated activation of transcription. We investigated whether GILZ could account for the deactivation of macrophages by glucocorticoids and IL-10. We found that GILZ was constitutively produced by macrophages in nonlymphoid tissues of humans and mice. Glucocorticoids and IL-10 stimulated the production of GILZ by macrophages both in vitro and in vivo. Transfection of the macrophagelike cell line THP-1 with the GILZ gene inhibited the expression of CD80 and CD86 and the production of the proinflammatory chemokines regulated on activation normal T-cell expressed and secreted (CCL5) and macrophage inflammatory protein 1α (CCL3). It also prevented toll-like receptor 2 production induced by lipopolysaccharide, interferonγ, or an anti-CD40 mAb, as well as NF-κB function. In THP-1 cells treated with glucocorticoids or IL-10, GILZ was associated with the p65 subunit of NF-κB. Activated macrophages in the granulomas of patients with Crohn disease or tuberculosis do not produce GILZ. In contrast, GILZ production persists in tumor-infiltrating macrophages in Burkitt lymphomas. Therefore, GILZ appears to play a key role in the anti-inflammatory and immunosuppressive effects of glucocorticoids and IL-10. Glucocorticoid treatment stimulates GILZ production, reproducing an effect of IL-10, a natural anti-inflammatory agent. The development of delayed-type hypersensitivity reactions is associated with the down-regulation of GILZ gene expression within lesions. In contrast, the persistence of GILZ gene expression in macrophages infiltrating Burkitt lymphomas may contribute to the failure of the immune system to reject the tumor.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Lukas Muri ◽  
Michael Perny ◽  
Jonas Zemp ◽  
Denis Grandgirard ◽  
Stephen L. Leib

ABSTRACTDespite appropriate antibiotic therapy, pneumococcal meningitis (PM) is associated with a case fatality rate of up to 30% in high-income countries. Survivors often suffer from severe lifelong disabilities. An excessive inflammatory reaction drives the pathophysiology, leading to brain damage and neurologic sequelae. We aimed to improve the outcome of experimental PM by simultaneously targeting different pathophysiological mechanisms with combined adjunctive therapies previously shown to be neuroprotective.In vitro, the anti-inflammatory effects of doxycycline and daptomycin were evaluated on primary rat astroglial cells stimulated withStreptococcus pneumoniae. Eleven-day-old infant Wistar rats were infected intracisternally withS. pneumoniaeand randomized for treatment with ceftriaxone or combination adjuvant therapy consisting of ceftriaxone, daptomycin, and doxycycline. During acute PM, combined-adjuvant therapy with ceftriaxone, daptomycin, and doxycycline increased the survival rate from 64.1% to 85.8% (P < 0.01) and alleviated weight loss compared to ceftriaxone monotherapy (P < 0.01). Levels of inflammatory cytokines were significantly reduced by combined-adjuvant therapyin vitro(P < 0.0001) and in cerebrospinal fluidin vivo(P < 0.05). In infected animals treated with combined adjunctive therapy, cortical damage was significantly reduced (P < 0.05), and animals showed a trend toward better hearing capacity 3 weeks after the infection (P = 0.089), an effect which was significant in mildly infected animals (48 decibels [dB] versus 67.22 dB;P < 0.05). These mildly infected animals showed significantly reduced cochlear fibrous occlusion (P < 0.01). By combining nonbacteriolytic daptomycin and anti-inflammatory doxycycline with ceftriaxone, the previously reported beneficial effects of the drugs were cumulated and identified the triple-antibiotic therapy as a promising therapeutic option for pediatric PM.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 378
Author(s):  
Miriam Corraliza-Gómez ◽  
Amalia B. Gallardo ◽  
Ana R. Díaz-Marrero ◽  
José M. de la Rosa ◽  
Luis D’Croz ◽  
...  

Neurodegenerative diseases are age-related disorders caused by progressive neuronal death in different regions of the nervous system. Neuroinflammation, modulated by glial cells, is a crucial event during the neurodegenerative process; consequently, there is an urgency to find new therapeutic products with anti-glioinflammatory properties. Five new furanocembranolides (1−5), along with leptolide, were isolated from two different extracts of Leptogorgia sp., and compound 6 was obtained from chemical transformation of leptolide. Their structures were determined based on spectroscopic evidence. These seven furanocembranolides were screened in vitro by measuring their ability to modulate interleukin-1β (IL-1β) production by microglial BV2 cells after LPS (lipopolysaccharide) stimulation. Leptolide and compounds 3, 4 and 6 exhibited clear anti-inflammatory effects on microglial cells, while compound 2 presented a pro-inflammatory outcome. The in vitro results prompted us to assess anti-glioinflammatory effects of leptolide in vivo in a high-fat diet-induced obese mouse model. Interestingly, leptolide treatment ameliorated both microgliosis and astrogliosis in this animal model. Taken together, our results reveal a promising direct biological effect of furanocembranolides on microglial cells as bioactive anti-inflammatory molecules. Among them, leptolide provides us a feasible therapeutic approach to treat neuroinflammation concomitant with metabolic impairment.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 449-449
Author(s):  
Patricia Perez ◽  
Desiree Wanders ◽  
Hannah Land ◽  
Kathryn Chiang ◽  
Rami Najjar ◽  
...  

Abstract Objectives Studies suggest that inflammation mediates the link between obesity and its comorbidities including type 2 diabetes and cardiovascular disease. Hence, there is a demand for effective alternative or complementary approaches to treat obesity-associated inflammation. The objective of this study was to determine whether consumption of blackberries (BL) and raspberries (RB) alone or in combination reduce obesity-induced inflammation. Methods In Vitro Study: RAW 264.7 macrophages were pretreated with either BL, RB, or BL + RB, each at a final concentration of 200 µg/mL for 2 h. LPS (1 ng/mL) was then added to the media for 16 h. mRNA expression of inflammatory cytokines was measured. In Vivo Study: Five-week-old mice were acclimated to a low-fat low-sucrose (LFLS) diet for one week after which mice were randomized 10 per group to one of five groups: 1) LFLS, 2) high-fat high-sucrose (HFHS), 3) HFHS + 10% BL, 4) HFHS + 10% RB, or 5) HFHS + 5% BL + 5% RB. Expression of inflammatory markers was measured in the liver as well as epididymal and inguinal white adipose tissue. Results In Vitro Study: Each berry alone and in combination suppressed the LPS-induced increase in inflammatory markers, with the combination (BL + RB) having the greatest effect. The combination suppressed LPS-induced expression of Ccl2, Tnfa, F4/80, and Il6 by 3.7−, 5.3−, 5.3−, and 4.4-fold, respectively. In Vivo Study: Gene expression analysis indicated that berry consumption had no significant effect on proinflammatory (Ccl2, Il1b, Tnfa, Il6, Itgam) or anti-inflammatory (Adipoq, Arg1, Mgl1) markers in adipose tissue depots or liver. However, relatively low gene expression of inflammatory markers in the tissues indicates that the mice fed the HFHS diet failed to develop a robust inflammatory state. Conclusions BL and RB have direct anti-inflammatory effects on immune cells. Initial analysis indicates that consumption of BL and RB has no significant effects on markers of inflammation in a diet-induced mouse model of obesity. However, it is possible that the relatively low levels of inflammation in these mice masked the anti-inflammatory potential of BL and RB. Ongoing analysis will provide additional insights into the effects of BL and RB on inflammation in these tissues. Funding Sources Lewis Foundation Award.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2173
Author(s):  
Yubao Wang ◽  
Pei Yu ◽  
Yi Li ◽  
Zhan Zhao ◽  
Xiaomei Wu ◽  
...  

Anti-inflammatory cytokine interleukin (IL)-10 is pivotal for limiting excessive inflammation in the central nervous system. Reports show that lipopolysaccharide (LPS)-induced microglial IL-10 emerges in a delayed manner in vitro and in vivo, lagging behind proinflammatory cytokines to facilitate the resolution of neuroinflammation. We hypothesized that IL-10 releases quite quickly based on our pilot investigation. Here, we uncovered a bimodal expression of microglial IL-10 gene transcription induced by LPS in mouse primary mixed glial cultures. This pattern consisted of a short brief early-phase and a long-lived late-phase, enabling the production of IL-10 protein in a rapid manner. The removal and addition of IL-10 protein assays indicated that early-released IL-10 exerted potent modulatory effects on neuroinflammation at picomolar levels, and IL-10 released at the onset of neuroinflammation is tightly controlled. We further showed that the early-released, but not the late-released, IL-10 was crucial for mediating and potentiating the anti-inflammatory function of a β2-adrenergic receptor agonist salmeterol. This study in vitro highlights the essential role of early-released IL-10 in regulating the appropriate degree of neuroinflammation, overturning the previous notion that microglial IL-10 produces and functions in a delayed manner and providing new insights into anti-inflammatory mechanisms-mediated neuroimmune homeostasis.


2021 ◽  
Author(s):  
Gaosheng Zhu ◽  
Keze Miao ◽  
Mingwei Dong ◽  
Jie Cai ◽  
Zhihao Shen ◽  
...  

Abstract Osteoarthritis (OA), a prevalent disabling disease, is characterized by irreversible cartilage degradation and persistent inflammation. The etiology as well as pathogenesis of OA are not completely unclear and need further investigation. Gigantol, is a bibenzyl derivative extracted from Dendrobium plants and has been found exhibit multiple effects such as anti-inflammatory effects. Nevertheless, the biological function of gigantol on osteoarthritis (OA) is still uncertain. This study aimed at examining the anti-inflammatory effects and latent mechanisms of gigantol in IL-1β-mediated OA progression. In vitro, we identified that gigantol treatment suppressed tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) in interleukin-1 beta (IL-1β) mediated mouse OA chondrocytes. Gigantol was also shown to dose dependently downregulate the metalloproteinase 13 (MMP13) as well as thrombospondin motifs 5 (ADAMTS5) levels. Moreover, IL-1β-mediated AKT and PI3K phosphorylation as well as NF-κB activation were inhibited by gigantol. Meanwhile, in vivo, we detected that gigantol treatment inhibited degradation of the cartilage degradation and lowered the Osteoarthritis Research Society International scores (OARSI) in OA mouse. Therefore, gigantol is a promising therapeutic option for OA.


Sign in / Sign up

Export Citation Format

Share Document