scholarly journals Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer’s disease

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung Yeon Lim ◽  
Sang In Park ◽  
Soon A. Park ◽  
Jung Ho Jeon ◽  
Ho Yong Jung ◽  
...  

Abstract Background Stem cell transplantation is a fascinating therapeutic approach for the treatment of many neurodegenerative disorders; however, clinical trials using stem cells have not been as effective as expected based on preclinical studies. The aim of this study is to validate the hypothesis that human neural crest-derived nasal turbinate stem cells (hNTSCs) are a clinically promising therapeutic source of adult stem cells for the treatment of Alzheimer’s disease (AD). Methods hNTSCs were evaluated in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) according to the effect of transplantation on AD pathology, including PET/CT neuroimaging, immune status indicated by microglial numbers and autophagic capacity, neuronal survival, and cognition, in a 5 × FAD transgenic mouse model of AD. Results We demonstrated that hNTSCs showed a high proliferative capacity and great neurogenic properties in vitro. Compared with hBM-MSC transplantation, hNTSC transplantation markedly reduced Aβ42 levels and plaque formation in the brains of the 5 × FAD transgenic AD mice on neuroimaging, concomitant with increased survival of hippocampal and cortex neurons. Moreover, hNTSCs strongly modulated immune status by reducing the number of microglia and the expression of the inflammatory cytokine IL-6 and upregulating autophagic capacity at 7 weeks after transplantation in AD models. Notably, compared with transplantation of hBM-MSCs, transplantation of hNTSCs significantly enhanced performance on the Morris water maze, with an increased level of TIMP2, which is necessary for spatial memory in young mice and neurons; this difference could be explained by the high engraftment of hNTSCs after transplantation. Conclusion The reliable evidence provided by these findings reveals a promising therapeutic effect of hNTSCs and indicates a step forward the clinical application of hNTSCs in patients with AD.

2021 ◽  
Author(s):  
Mohamed Hosney ◽  
Alaa Sakraan ◽  
Aman Asaad ◽  
Mervat El-Deftar ◽  
Emad Elzayat

Abstract Alzheimer's disease (AD) is the most prevalent type of dementia characterized by its progression, neurobehavioral and neuro-pathological characteristics, leading to a diverse neuronal loss. Adipose-derived mesenchymal stem cells (ADMSCs) have previously proved potential role in preventing the pathogenesis of several neurodegenerative disorders, so regarded as a promising new approach for AD regenerative therapy. Taurine was found to enhance stem cell activation and propagation yielding a higher concentration of neural progenitors and stem cells, and aid to lessen the number of activated microglia leading to down-regulated inflammation in vitro. The present study aimed to investigate the possible therapeutic potential of ADMSCs and/or taurine in treating AD rat model. It was planned to include three successive phases; induction, withdrawal, and therapeutic phases. Fifty male Wistar rats were divided into 2 main groups: control (C) group and AD model group. Behavioral changes, as manifested by the T-Maze experiment, had been recorded. β-amyloid levels had been measured in brain homogenate and serum by ELISA. Oxidative stress marker (MDA), and anti-oxidant enzymes activity (SOD, GSH, and CAT) in brain, as well as serum acetylcholine esterase activity were spectrophotometrically determined. Pro-apoptotic (p53 and Bax) and anti-apoptotic (Bcl2) gene expression in brain were evaluated using RT-qPCR. The histopathological alterations in brain tissues were also observed. The present study proved the potential therapeutic ability of ADMSCs and/or taurine in alleviating the adverse pathological changes induced by AlCl3 in AD rat model at both physiological and molecular levels.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Hu Haiyan ◽  
Yang Rensong ◽  
Jin Guoqin ◽  
Zhang Xueli ◽  
Xia Huaying ◽  
...  

Stem cell-based therapy is a promising treatment strategy for neurodegenerative diseases such as Alzheimer’s disease (AD). However, the mechanism underlying the maintenance of renewal and replacement capabilities of endogenous progenitor cells or engrafted stem cells in a pathological environment remains elusive. To investigate the effect of astragaloside IV (ASI) on the proliferation and differentiation of the engrafted neural stem cells (NSCs), we cultured NSCs from the hippocampus of E14 rat embryos, treated the cells with ASI, and then transplanted the cells into the hippocampus of rat AD models.In vitroexperimentation showed that 10−5 M ASI induced NSCs to differentiate intoβ-tubulin III+and GFAP+cells. NSCs transplantation into rat AD models resulted in improvements in learning and memory, especially in the ASI-treated groups. ASI treatment resulted in an increase in the number ofβ-tubulin III+cells in the hippocampus. Further investigation showed that ASI inhibited PS1 expressionin vitroandin vivo. The high-dose ASI downregulated the Notch intracellular domain, whereas the low-dose ASI increased Notch-1 and NICD. In conclusion, ASI treatment resulted in improvements in learning and memory of AD models by promoting NSC proliferation and differentiation partly through the Notch signal pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Nermeen El-Moataz Bellah Ahmed ◽  
Masashi Murakami ◽  
Yujiro Hirose ◽  
Misako Nakashima

The secretome obtained from stem cell cultures contains an array of neurotrophic factors and cytokines that might have the potential to treat neurodegenerative conditions. Alzheimer’s disease (AD) is one of the most common human late onset and sporadic neurodegenerative disorders. Here, we investigated the therapeutic potential of secretome derived from dental pulp stem cells (DPSCs) to reduce cytotoxicity and apoptosis caused by amyloid beta (Aβ) peptide. We determined whether DPSCs can secrete the Aβ-degrading enzyme, neprilysin (NEP), and evaluated the effects of NEP expression in vitro by quantitating Aβ-degrading activity. The results showed that DPSC secretome contains higher concentrations of VEGF, Fractalkine, RANTES, MCP-1, and GM-CSF compared to those of bone marrow and adipose stem cells. Moreover, treatment with DPSC secretome significantly decreased the cytotoxicity of Aβpeptide by increasing cell viability compared to nontreated cells. In addition, DPSC secretome stimulated the endogenous survival factor Bcl-2 and decreased the apoptotic regulator Bax. Furthermore, neprilysin enzyme was detected in DPSC secretome and succeeded in degradingAβ1–42in vitro in 12 hours. In conclusion, our study demonstrates that DPSCs may serve as a promising source for secretome-based treatment of Alzheimer’s disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Martina Gatti ◽  
Manuela Zavatti ◽  
Francesca Beretti ◽  
Daniela Giuliani ◽  
Eleonora Vandini ◽  
...  

Alzheimer’s disease (AD) is characterized by abnormal protein aggregation, deposition of extracellular β-amyloid proteins (Aβ), besides an increase of oxidative stress. Amniotic fluid stem cells (AFSCs) should have a therapeutic potential for neurodegenerative disorders, mainly through a paracrine effect mediated by extracellular vesicles (EV). Here, we examined the effect of EV derived from human AFSCs (AFSC-EV) on the disease phenotypes in an AD neuron primary culture. We observed a positive effect of AFSC-EV on neuron morphology, viability, and Aβ and phospho-Tau levels. This could be due to the apoptotic and autophagic pathway modulation derived from the decrease in oxidative stress. Indeed, reactive oxygen species (ROS) were reduced, while GSH levels were enhanced. This modulation could be ascribed to the presence of ROS regulating enzymes, such as SOD1 present into the AFSC-EV themselves. This study describes the ROS-modulating effects of extracellular vesicles alone, apart from their deriving stem cell, in an AD in vitro model, proposing AFSC-EV as a therapeutic tool to stop the progression of AD.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Alen Zollo ◽  
Zoe Allen ◽  
Helle F. Rasmussen ◽  
Filomena Iannuzzi ◽  
Yichen Shi ◽  
...  

Alzheimer’s disease (AD) is the most common form of dementia in the elderly; important risk factors are old age and inheritance of the apolipoprotein E4 (APOE4) allele. Changes in amyloid precursor protein (APP) binding, trafficking, and sorting may be important AD causative factors. Secretase-mediated APP cleavage produces neurotoxic amyloid-beta (Aβ) peptides, which form lethal deposits in the brain. In vivo and in vitro studies have implicated sortilin-related receptor (SORL1) as an important factor in APP trafficking and processing. Recent in vitro evidence has associated the APOE4 allele and alterations in the SORL1 pathway with AD development and progression. Here, we analyzed SORL1 expression in neural stem cells (NSCs) from AD patients carrying null, one, or two copies of the APOE4 allele. We show reduced SORL1 expression only in NSCs of a patient carrying two copies of APOE4 allele with increased Aβ/SORL1 localization along the degenerated neurites. Interestingly, SORL1 binding to APP was largely compromised; this could be almost completely reversed by γ-secretase (but not β-secretase) inhibitor treatment. These findings may yield new insights into the complex interplay of SORL1 and AD pathology and point to NSCs as a valuable tool to address unsolved AD-related questions in vitro.


2021 ◽  
Vol 13 ◽  
Author(s):  
Sopak Supakul ◽  
Hideyuki Okano ◽  
Sumihiro Maeda

Alzheimer’s disease (AD) is an aging-dependent neurodegenerative disease that impairs cognitive function. Although the main pathologies of AD are the aggregation of amyloid-beta (Aβ) and phosphorylated Tau protein, the mechanisms that lead to these pathologies and their effects are believed to be heterogeneous among patients. Many epidemiological studies have suggested that sex is involved in disease prevalence and progression. The reduction of sex hormones contributes to the pathogenesis of AD, especially in females, suggesting that the supplementation of sex hormones could be a therapeutic intervention for AD. However, interventional studies have revealed that hormone therapy is beneficial under limited conditions in certain populations with specific administration methods. Thus, this suggests the importance of identifying crucial factors that determine hormonal effects in patients with AD. Based on these factors, it is necessary to decide which patients will receive the intervention before starting it. However, the long observational period and many uncontrollable environmental factors in clinical trials made it difficult to identify such factors, except for the APOE ε4 allele. Induced pluripotent stem cells (iPSCs) derived from patients can differentiate into neurons and recapitulate some aspects of AD pathogenesis. This in vitro model allows us to control non-cell autonomous factors, including the amount of Aβ aggregates and sex hormones. Hence, iPSCs provide opportunities to investigate sex-dependent pathogenesis and predict a suitable population for clinical trials of hormone treatment.


2020 ◽  
pp. 263-285
Author(s):  
Hyun-Ji Park ◽  
Song Ih Ahn ◽  
Jeong-Kee Yoon ◽  
Hyunjung Lee ◽  
YongTae Kim

Sign in / Sign up

Export Citation Format

Share Document