scholarly journals Oxidative Stress in Alzheimer’s Disease: In Vitro Therapeutic Effect of Amniotic Fluid Stem Cells Extracellular Vesicles

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Martina Gatti ◽  
Manuela Zavatti ◽  
Francesca Beretti ◽  
Daniela Giuliani ◽  
Eleonora Vandini ◽  
...  

Alzheimer’s disease (AD) is characterized by abnormal protein aggregation, deposition of extracellular β-amyloid proteins (Aβ), besides an increase of oxidative stress. Amniotic fluid stem cells (AFSCs) should have a therapeutic potential for neurodegenerative disorders, mainly through a paracrine effect mediated by extracellular vesicles (EV). Here, we examined the effect of EV derived from human AFSCs (AFSC-EV) on the disease phenotypes in an AD neuron primary culture. We observed a positive effect of AFSC-EV on neuron morphology, viability, and Aβ and phospho-Tau levels. This could be due to the apoptotic and autophagic pathway modulation derived from the decrease in oxidative stress. Indeed, reactive oxygen species (ROS) were reduced, while GSH levels were enhanced. This modulation could be ascribed to the presence of ROS regulating enzymes, such as SOD1 present into the AFSC-EV themselves. This study describes the ROS-modulating effects of extracellular vesicles alone, apart from their deriving stem cell, in an AD in vitro model, proposing AFSC-EV as a therapeutic tool to stop the progression of AD.

2021 ◽  
Author(s):  
Mohamed Hosney ◽  
Alaa Sakraan ◽  
Aman Asaad ◽  
Mervat El-Deftar ◽  
Emad Elzayat

Abstract Alzheimer's disease (AD) is the most prevalent type of dementia characterized by its progression, neurobehavioral and neuro-pathological characteristics, leading to a diverse neuronal loss. Adipose-derived mesenchymal stem cells (ADMSCs) have previously proved potential role in preventing the pathogenesis of several neurodegenerative disorders, so regarded as a promising new approach for AD regenerative therapy. Taurine was found to enhance stem cell activation and propagation yielding a higher concentration of neural progenitors and stem cells, and aid to lessen the number of activated microglia leading to down-regulated inflammation in vitro. The present study aimed to investigate the possible therapeutic potential of ADMSCs and/or taurine in treating AD rat model. It was planned to include three successive phases; induction, withdrawal, and therapeutic phases. Fifty male Wistar rats were divided into 2 main groups: control (C) group and AD model group. Behavioral changes, as manifested by the T-Maze experiment, had been recorded. β-amyloid levels had been measured in brain homogenate and serum by ELISA. Oxidative stress marker (MDA), and anti-oxidant enzymes activity (SOD, GSH, and CAT) in brain, as well as serum acetylcholine esterase activity were spectrophotometrically determined. Pro-apoptotic (p53 and Bax) and anti-apoptotic (Bcl2) gene expression in brain were evaluated using RT-qPCR. The histopathological alterations in brain tissues were also observed. The present study proved the potential therapeutic ability of ADMSCs and/or taurine in alleviating the adverse pathological changes induced by AlCl3 in AD rat model at both physiological and molecular levels.


2020 ◽  
Vol 21 (24) ◽  
pp. 9513
Author(s):  
Patricia Garrido-Pascual ◽  
Ana Alonso-Varona ◽  
Begoña Castro ◽  
María Burón ◽  
Teodoro Palomares

Oxidative stress associated with neuroinflammation is a key process involved in the pathophysiology of neurodegenerative diseases, and therefore, has been proposed as a crucial target for new therapies. Recently, the therapeutic potential of human adipose-derived stem cells (hASCs) has been investigated as a novel strategy for neuroprotection. These cells can be preconditioned by exposing them to mild stress in order to improve their response to oxidative stress. In this study, we evaluate the therapeutic potential of hASCs preconditioned with low doses of H2O2 (called HC016 cells) to overcome the deleterious effect of oxidative stress in an in vitro model of oligodendrocyte-like cells (HOGd), through two strategies: i, the culture of oxidized HOGd with HC016 cell-conditioned medium (CM), and ii, the indirect co-culture of oxidized HOGd with HC016 cells, which had or had not been exposed to oxidative stress. The results demonstrated that both strategies had reparative effects, oxidized HC016 cell co-culture being the one associated with the greatest recovery of the damaged HOGd, increasing their viability, reducing their intracellular reactive oxygen species levels and promoting their antioxidant capacity. Taken together, these findings support the view that HC016 cells, given their reparative capacity, might be considered an important breakthrough in cell-based therapies.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Pasquale Marrazzo ◽  
Cristina Angeloni ◽  
Michela Freschi ◽  
Antonello Lorenzini ◽  
Cecilia Prata ◽  
...  

Amniotic fluid stem cells (AFSCs) are characterized in vivo by a unique niche guarantying their homeostatic role in the body. Maintaining the functionality of stem cells ex vivo for clinical applications requires a continuous improvement of cell culture conditions. Cellular redox status plays an important role in stem cell biology as long as reactive oxygen species (ROS) concentration is finely regulated and their adverse effects are excluded. The aim of this study was to investigate the protective effect of two antioxidants, sulforaphane (SF) and epigallocatechin gallate (EGCG), against in vitro oxidative stress due to hyperoxia and freeze-thawing cycles in AFSCs. Human AFSCs were isolated and characterized from healthy subjects. Assays of metabolic function and antioxidant activity were performed to investigate the effect of SF and EGCG cotreatment on AFSCs. Real-time PCR was used to investigate the effect of the cotreatment on pluripotency, senescence, osteogenic and adipogenic markers, and antioxidant enzymes. Alkaline phosphatase assays and Alizarin Red staining were used to confirm osteogenic differentiation. The cotreatment with SF and EGCG was effective in reducing ROS production, increasing GSH levels, and enhancing the endogenous antioxidant defences through the upregulation of glutathione reductase, NAD(P)H:quinone oxidoreductase-1, and thioredoxin reductase. Intriguingly, the cotreatment sustained the stemness state by upregulating pluripotency markers such as OCT4 and NANOG. Moreover, the cotreatment influenced senescence-associated gene markers in respect to untreated cells. The cotreatment upregulated osteogenic gene markers and promoted osteogenic differentiation in vitro. SF and EGCG can be used in combination in AFSC culture as a strategy to preserve stem cell functionality.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Nermeen El-Moataz Bellah Ahmed ◽  
Masashi Murakami ◽  
Yujiro Hirose ◽  
Misako Nakashima

The secretome obtained from stem cell cultures contains an array of neurotrophic factors and cytokines that might have the potential to treat neurodegenerative conditions. Alzheimer’s disease (AD) is one of the most common human late onset and sporadic neurodegenerative disorders. Here, we investigated the therapeutic potential of secretome derived from dental pulp stem cells (DPSCs) to reduce cytotoxicity and apoptosis caused by amyloid beta (Aβ) peptide. We determined whether DPSCs can secrete the Aβ-degrading enzyme, neprilysin (NEP), and evaluated the effects of NEP expression in vitro by quantitating Aβ-degrading activity. The results showed that DPSC secretome contains higher concentrations of VEGF, Fractalkine, RANTES, MCP-1, and GM-CSF compared to those of bone marrow and adipose stem cells. Moreover, treatment with DPSC secretome significantly decreased the cytotoxicity of Aβpeptide by increasing cell viability compared to nontreated cells. In addition, DPSC secretome stimulated the endogenous survival factor Bcl-2 and decreased the apoptotic regulator Bax. Furthermore, neprilysin enzyme was detected in DPSC secretome and succeeded in degradingAβ1–42in vitro in 12 hours. In conclusion, our study demonstrates that DPSCs may serve as a promising source for secretome-based treatment of Alzheimer’s disease.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Prabin Upadhyaya ◽  
Alessandra Di Serafino ◽  
Luca Sorino ◽  
Patrizia Ballerini ◽  
Marco Marchisio ◽  
...  

Abstract Background Bleomycin, etoposide and cisplatin (BEP) are three chemotherapeutic agents widely used individually or in combination with each other or other chemotherapeutic agents in the treatment of various cancers. These chemotherapeutic agents are cytotoxic; hence, along with killing cancerous cells, they also damage stem cell pools in the body, which causes various negative effects on patients. The epigenetic changes due to the individual action of BEP on stem cells are largely unknown. Methods Human amniotic fluid stem cells (hAFSCs) were treated with our in-vitro standardized dosages of BEP individually, for seven days. The cells were harvested after the treatment and extraction of DNA and RNA were performed. Real-time PCR and flow cytometry were conducted for cell markers analysis. The global DNA methylation was quantified using 5mC specific kit and promoter and CpG methylation % through bisulfite conversion and pyrosequencing. Micro- RNAs (miRNAs) were quantified with real-time qPCR. Results The cytotoxic nature of BEP was observed even at low dosages throughout the experiment. We also investigated the change in the expression of various pluripotent and germline markers and found a significant change in the properties of the cells after the treatments. The methylation of DNA at global, promoter and individual CpG levels largely get fluctuated due to the BEP treatment. Several tested miRNAs showed differential expression. No positive correlation between mRNA and protein expression was observed for some markers. Conclusion Cytotoxic chemotherapeutic agents such as BEP were found to alter stem cell properties of hAFSCs. Different methylation profiles change dynamically, which may explain such changes in cellular properties. Data also suggests that the fate of hAFSCs after treatment may depend upon the interplay between the miRNAs. Finally, our results demonstrate that hAFSCs might prove to be a suitable in-vitro model of stem cells to predict genetic and epigenetic modification due to the action of various drugs.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Victor Bodart-Santos ◽  
Luiza R. P. de Carvalho ◽  
Mariana A. de Godoy ◽  
André F. Batista ◽  
Leonardo M. Saraiva ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton’s jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer’s disease-linked amyloid beta oligomers (AβOs). Methods We isolated and characterized EVs released by human Wharton’s jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AβOs. Results hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AβOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AβOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. Conclusions hMSC-EVs protected hippocampal neurons from damage induced by AβOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer’s disease.


2020 ◽  
Vol 17 (2) ◽  
pp. 141-157 ◽  
Author(s):  
Dubravka S. Strac ◽  
Marcela Konjevod ◽  
Matea N. Perkovic ◽  
Lucija Tudor ◽  
Gordana N. Erjavec ◽  
...  

Background: Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer’s disease. Objective: The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer’s disease. Method: PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. Results: We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer’s disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. Conclusion: Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer’s disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document