scholarly journals Deep learning integration of molecular and interactome data for protein–compound interaction prediction

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Narumi Watanabe ◽  
Yuuto Ohnuki ◽  
Yasubumi Sakakibara

Abstract Motivation Virtual screening, which can computationally predict the presence or absence of protein–compound interactions, has attracted attention as a large-scale, low-cost, and short-term search method for seed compounds. Existing machine learning methods for predicting protein–compound interactions are largely divided into those based on molecular structure data and those based on network data. The former utilize information on proteins and compounds, such as amino acid sequences and chemical structures; the latter rely on interaction network data, such as protein–protein interactions and compound–compound interactions. However, there have been few attempts to combine both types of data in molecular information and interaction networks. Results We developed a deep learning-based method that integrates protein features, compound features, and multiple types of interactome data to predict protein–compound interactions. We designed three benchmark datasets with different difficulties and applied them to evaluate the prediction method. The performance evaluations show that our deep learning framework for integrating molecular structure data and interactome data outperforms state-of-the-art machine learning methods for protein–compound interaction prediction tasks. The performance improvement is statistically significant according to the Wilcoxon signed-rank test. This finding reveals that the multi-interactome data captures perspectives other than amino acid sequence homology and chemical structure similarity and that both types of data synergistically improve the prediction accuracy. Furthermore, experiments on the three benchmark datasets show that our method is more robust than existing methods in accurately predicting interactions between proteins and compounds that are unseen in training samples.

2021 ◽  
Author(s):  
Narumi Watanabe ◽  
Yuuto Ohnuki ◽  
Yasubumi Sakakibara

AbstractMotivationVirtual screening, which can computationally predict the presence or absence of protein-compound interactions, has attracted attention as a large-scale, low-cost, and short-term search method for seed compounds. Existing machine learning methods for predicting protein-compound interactions are largely divided into those based on molecular structure data and those based on network data. The former utilize information on proteins and compounds, such as amino acid sequences and chemical structures, while the latter utilize interaction network data, such as data on protein-protein interactions and compound-compound interactions. However, few attempts have been made to combine both types of data in molecular information and interaction networks.ResultsWe developed a deep learning-based method that integrates protein features, compound features, and multiple types of interactome data to predict protein-compound interactions. We designed three benchmark datasets with different difficulties and evaluated the performance on them. The performance evaluations show that our deep learning framework for integrating molecular structure data and interactome data outperforms state-of-the-art machine learning methods for protein-compound interaction prediction tasks. The performance improvement is proven to be statistically significant by the Wilcoxon signed-rank test. This reveals that the multi-interactome captures different perspectives than amino acid sequence homology and chemical structure similarity, and both type of data have a synergistic effect in improving prediction accuracy. Furthermore, experiments on three benchmark datasets show that our method is more robust than existing methods in accurately predicting interactions between proteins and compounds that are unseen in the training samples.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Yao Huang ◽  
Justin Bo-Kai Hsu ◽  
Tzong-Yi Lee

Abstract Succinylation is a type of protein post-translational modification (PTM), which can play important roles in a variety of cellular processes. Due to an increasing number of site-specific succinylated peptides obtained from high-throughput mass spectrometry (MS), various tools have been developed for computationally identifying succinylated sites on proteins. However, most of these tools predict succinylation sites based on traditional machine learning methods. Hence, this work aimed to carry out the succinylation site prediction based on a deep learning model. The abundance of MS-verified succinylated peptides enabled the investigation of substrate site specificity of succinylation sites through sequence-based attributes, such as position-specific amino acid composition, the composition of k-spaced amino acid pairs (CKSAAP), and position-specific scoring matrix (PSSM). Additionally, the maximal dependence decomposition (MDD) was adopted to detect the substrate signatures of lysine succinylation sites by dividing all succinylated sequences into several groups with conserved substrate motifs. According to the results of ten-fold cross-validation, the deep learning model trained using PSSM and informative CKSAAP attributes can reach the best predictive performance and also perform better than traditional machine-learning methods. Moreover, an independent testing dataset that truly did not exist in the training dataset was used to compare the proposed method with six existing prediction tools. The testing dataset comprised of 218 positive and 2621 negative instances, and the proposed model could yield a promising performance with 84.40% sensitivity, 86.99% specificity, 86.79% accuracy, and an MCC value of 0.489. Finally, the proposed method has been implemented as a web-based prediction tool (CNN-SuccSite), which is now freely accessible at http://csb.cse.yzu.edu.tw/CNN-SuccSite/.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4595
Author(s):  
Parisa Asadi ◽  
Lauren E. Beckingham

X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating the internal features of porous rock. Reliable phase segmentation in these images is highly necessary but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective. Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider several extracted features in addition to color attenuation, is a promising and powerful method for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images enables faster data collection and interpretation than traditional methods. This study investigates the performance of several filtering techniques with three machine learning methods and a deep learning method to assess the potential for reliable feature extraction and pixel-level phase segmentation of X-ray CT images. Features were first extracted from images using well-known filters and from the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering, Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified U-Net model, were applied to the extracted input features. The models’ performances were then compared and contrasted to determine the influence of the machine learning method and input features on reliable phase segmentation. The results showed considering more dimensionality has promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94. Feature-based Random Forest demonstrated the best performance among the machine learning models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos and Marcellus, respectively. In general, considering more features provided promising and reliable segmentation results that are valuable for analyzing the composition of dense samples, such as shales, which are significant unconventional reservoirs in oil recovery.


2021 ◽  
Author(s):  
Timo Kumpula ◽  
Janne Mäyrä ◽  
Anton Kuzmin ◽  
Arto Viinikka ◽  
Sonja Kivinen ◽  
...  

<p>Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. Different proxy variables indicating species richness and quality of the sites are essential for efficient detecting and monitoring forest biodiversity. European aspen (Populus tremula L.) is a minor deciduous tree species with a high importance in maintaining biodiversity in boreal forests. Large aspen trees host hundreds of species, many of them classified as threatened. However, accurate fine-scale spatial data on aspen occurrence remains scarce and incomprehensive.</p><p> </p><p>We studied detection of aspen using different remote sensing techniques in Evo, southern Finland. Our study area of 83 km<sup>2</sup> contains both managed and protected southern boreal forests characterized by Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), whereas European aspen has a relatively sparse and scattered occurrence in the area. We collected high-resolution airborne hyperspectral and airborne laser scanning data covering the whole study area and ultra-high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors from selected parts of the area. We tested the discrimination of aspen from other species at tree level using different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks).</p><p> </p><p>Airborne hyperspectral and lidar data gave excellent results with machine learning and deep learning classification methods The highest classification accuracies for aspen varied between 91-92% (F1-score). The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724–727 nm) and shortwave infrared (1520–1564 nm and 1684–1706 nm) (Viinikka et al. 2020; Mäyrä et al 2021). Aspen detection using RGB and multispectral data also gave good results (highest F1-score of aspen = 87%) (Kuzmin et al 2021). Different remote sensing data enabled production of a spatially explicit map of aspen occurrence in the study area. Information on aspen occurrence and abundance can significantly contribute to biodiversity management and conservation efforts in boreal forests. Our results can be further utilized in upscaling efforts aiming at aspen detection over larger geographical areas using satellite images.</p>


2019 ◽  
Vol 11 (2) ◽  
pp. 196 ◽  
Author(s):  
Omid Ghorbanzadeh ◽  
Thomas Blaschke ◽  
Khalil Gholamnia ◽  
Sansar Meena ◽  
Dirk Tiede ◽  
...  

There is a growing demand for detailed and accurate landslide maps and inventories around the globe, but particularly in hazard-prone regions such as the Himalayas. Most standard mapping methods require expert knowledge, supervision and fieldwork. In this study, we use optical data from the Rapid Eye satellite and topographic factors to analyze the potential of machine learning methods, i.e., artificial neural network (ANN), support vector machines (SVM) and random forest (RF), and different deep-learning convolution neural networks (CNNs) for landslide detection. We use two training zones and one test zone to independently evaluate the performance of different methods in the highly landslide-prone Rasuwa district in Nepal. Twenty different maps are created using ANN, SVM and RF and different CNN instantiations and are compared against the results of extensive fieldwork through a mean intersection-over-union (mIOU) and other common metrics. This accuracy assessment yields the best result of 78.26% mIOU for a small window size CNN, which uses spectral information only. The additional information from a 5 m digital elevation model helps to discriminate between human settlements and landslides but does not improve the overall classification accuracy. CNNs do not automatically outperform ANN, SVM and RF, although this is sometimes claimed. Rather, the performance of CNNs strongly depends on their design, i.e., layer depth, input window sizes and training strategies. Here, we conclude that the CNN method is still in its infancy as most researchers will either use predefined parameters in solutions like Google TensorFlow or will apply different settings in a trial-and-error manner. Nevertheless, deep-learning can improve landslide mapping in the future if the effects of the different designs are better understood, enough training samples exist, and the effects of augmentation strategies to artificially increase the number of existing samples are better understood.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Hao Zhang ◽  
Zhanliang Sang ◽  
Lingwei Xu ◽  
Conghui Cao ◽  
...  

Automatic modulation recognition has successfully used various machine learning methods and achieved certain results. As a subarea of machine learning, deep learning has made great progress in recent years and has made remarkable progress in the field of image and language processing. Deep learning requires a large amount of data support. As a communication field with a large amount of data, there is an inherent advantage of applying deep learning. However, the extensive application of deep learning in the field of communication has not yet been fully developed, especially in underwater acoustic communication. In this paper, we mainly discuss the modulation recognition process which is an important part of communication process by using the deep learning method. Different from the common machine learning methods that require feature extraction, the deep learning method does not require feature extraction and obtains more effects than common machine learning.


2017 ◽  
Author(s):  
Fadhl M Alakwaa ◽  
Kumardeep Chaudhary ◽  
Lana X Garmire

ABSTRACTMetabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+) and 67 negative estrogen receptor (ER-), to test the accuracies of autoencoder, a deep learning (DL) framework, as well as six widely used machine learning models, namely Random Forest (RF), Support Vector Machines (SVM), Recursive Partitioning and Regression Trees (RPART), Linear Discriminant Analysis (LDA), Prediction Analysis for Microarrays (PAM), and Generalized Boosted Models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER-patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value<0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion & absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accurcy (AUC=0.93) and better revelation of disease biology. We encourage the adoption of autoencoder based deep learning method in the metabolomics research community for classification.


2020 ◽  
Vol 21 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Zheng-Xing Guan ◽  
Shi-Hao Li ◽  
Zi-Mei Zhang ◽  
Dan Zhang ◽  
Hui Yang ◽  
...  

MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as timeconsuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field.


Sign in / Sign up

Export Citation Format

Share Document