scholarly journals Enhancing the therapeutic effects of in vitro targeted radionuclide therapy of 3D multicellular tumor spheroids using the novel stapled MDM2/X-p53 antagonist PM2

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anja C. L. Mortensen ◽  
Eric Morin ◽  
Christopher J. Brown ◽  
David P. Lane ◽  
Marika Nestor

Abstract Background Precision therapeutics continuously make advances in cancer therapy, and a field of growing interest is the combination of targeted radionuclide therapy (TRNT) with potential radiosensitizing agents. This study evaluated whether the effects of in vitro TRNT, using the 177Lu-labeled anti-CD44v6 antibody AbN44v6, were potentiated by the novel stapled MDM2/X-p53 antagonist PM2. Materials and methods Two wt p53 cell lines, HCT116 (colorectal carcinoma) and UM-SCC-74B (head and neck squamous cell carcinoma), expressing different levels of the target antigen, CD44v6, were used. Antigen-specific binding of 177Lu-AbN44v6 was initially verified in a 2D cell assay, after which the potential effects of unlabeled AbN44v6 on downstream phosphorylation of Erk1/2 were evaluated by western blotting. Further, the therapeutic effects of unlabeled AbN44v6, 177Lu-AbN44v6, PM2, or a combination (labeled/unlabeled AbN44v6 +/− PM2) were assessed in 3D multicellular tumor spheroid assays. Results Radiolabeled antibody bound specifically to CD44v6 on both cell lines. Unlabeled AbN44v6 binding did not induce downstream phosphorylation of Erk1/2 at any of the concentrations tested, and repeated treatments with the unlabeled antibody did not result in any spheroid growth inhibition. 177Lu-AbN44v6 impaired spheroid growth in a dose-dependent and antigen-dependent manner. A single modality treatment with 20 μM of PM2 significantly impaired spheroid growth in both spheroid models. Furthermore, the combination of TRNT and PM2-based therapy proved significantly more potent than either monotherapy. In HCT116 spheroids, this resulted in a two- and threefold spheroid growth rate decrease for the combination of PM2 and 100 kBq 177Lu-AbN44v6 compared to monotherapies 14-day post treatment. In UM-SCC-74B spheroids, the combination therapy resulted in a reduction in spheroid size compared to the initial spheroid size 10-day post treatment. Conclusion TRNT using 177Lu-AbN44v6 proved efficient in stalling spheroid growth in a dose-dependent and antigen-dependent manner, and PM2 treatment demonstrated a growth inhibitory effect as a monotherapy. Moreover, by combining TRNT with PM2-based therapy, therapeutic effects of TRNT were potentiated in a 3D multicellular tumor spheroid model. This proof-of-concept study exemplifies the strength and possibility of combining TRNT targeting CD44v6 with PM2-based therapy.

2009 ◽  
Vol 297 (4) ◽  
pp. F1045-F1054 ◽  
Author(s):  
Yufeng Huang ◽  
Wayne A. Border ◽  
Daniel A. Lawrence ◽  
Nancy A. Noble

Administration of a mutant, noninhibitory PAI-1 (PAI-1R), reduces disease in experimental glomerulonephritis. Here we investigated the importance of vitronectin (Vn) binding, PAI-1 stability and protease binding in this therapeutic effect using a panel of PAI-1 mutants differing in half-life, protease binding, and Vn binding. PAI-1R binds Vn normally but does not inhibit proteases. PAI-1AK has a complete defect in Vn binding but retains full inhibitory activity, with a short half-life similar to wild-type (wt)-PAI-1. Mutant 14-lb is identical to wt-PAI-1 but with a longer half-life. PAI-1K has defective Vn binding, inhibits proteases normally, and has a long half-life. In vitro wt-PAI-1 dramatically inhibited degradation of mesangial cell ECM while the AK mutant had much less effect. Mutants 14-1b and PAI-1K, like wt-PAI-1, inhibited matrix degradation but PAI-1R failed to reverse this inhibition although PAI-1R reversed the wt-PAI-1-induced inhibition of ECM degradation in a plasmin-, time-, and dose-dependent manner. Thus the ability of PAI-1 to inhibit ECM degradation is dependent both on its antiproteinase activity and on maintaining an active conformation achieved either by Vn binding or mutation to a stable form. Administration of these PAI-1 mutants to nephritic rats confirmed the in vitro data; only PAI-1R showed therapeutic effects. PAI-1K did not bind to nephritic kidney, indicating that Vn binding is essential to the therapeutic action of PAI-1R. The ability of PAI-1R to remain bound to Vn even in a high-protease environment is very likely the key to its therapeutic efficacy. Furthermore, because both PAI-1R and 14-1b bound to the nephritic kidney in the same pattern and differ only in their ability to bind proteases, lack of protease inhibition is also keyed to PAI-1R's therapeutic action.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 424 ◽  
Author(s):  
Klaudia Siwowska ◽  
Patrycja Guzik ◽  
Katharina A. Domnanich ◽  
Josep M. Monné Rodríguez ◽  
Peter Bernhardt ◽  
...  

Targeted radionuclide therapy with 177Lu- and 90Y-labeled radioconjugates is a clinically-established treatment modality for metastasized cancer. 47Sc is a therapeutic radionuclide that decays with a half-life of 3.35 days and emits medium-energy β−-particles. In this study, 47Sc was investigated, in combination with a DOTA-folate conjugate, and compared to the therapeutic properties of 177Lu-folate and 90Y-folate, respectively. In vitro, 47Sc-folate demonstrated effective reduction of folate receptor-positive ovarian tumor cell viability similar to 177Lu-folate, but 90Y-folate was more potent at equal activities due to the higher energy of emitted β−-particles. Comparable tumor growth inhibition was observed in mice that obtained the same estimated absorbed tumor dose (~21 Gy) when treated with 47Sc-folate (12.5 MBq), 177Lu-folate (10 MBq), and 90Y-folate (5 MBq), respectively. The treatment resulted in increased median survival of 39, 43, and 41 days, respectively, as compared to 26 days in untreated controls. There were no statistically significant differences among the therapeutic effects observed in treated groups. Histological assessment revealed no severe side effects two weeks after application of the radiofolates, even at double the activity used for therapy. Based on the decay properties and our results, 47Sc is likely to be comparable to 177Lu when employed for targeted radionuclide therapy. It may, therefore, have potential for clinical translation and be of particular interest in tandem with 44Sc or 43Sc as a diagnostic match, enabling the realization of radiotheragnostics in future.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xu Yan ◽  
Jinrong Xue ◽  
Hongjin Wu ◽  
Shengqi Wang ◽  
Yuna Liu ◽  
...  

Ginsenoside (GS-Rb1) is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) were first isolated, cultured, and then incubated with or without GS-Rb1 (2.5–40μM)in vitrounder conditions of hypoxia and ischemia. Cell growth, proliferation, and apoptosis were detected by MTT and flow cytometry. Expressions of various microRNAs were analyzed by real-time PCR. Compared with that of the control group, GS-Rb1 significantly decreased cell death in a dose-dependent manner and expressions of mir-1, mir-29a, and mir-208 obviously increased in the experimental model groups. In contrast, expressions of mir-21 and mir-320 were significantly downregulated and GS-Rb1 could reverse the differences in a certain extent. The miRNAs might be involved in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes. The effect might be based on the upregulation of mir-1, mir-29a, and mir-208 and downregulation of mir-21 and mir-320. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4971
Author(s):  
Kanji Hosoda ◽  
Nobuhiro Koyama ◽  
Hiroshi Hamamoto ◽  
Akiho Yagi ◽  
Ryuji Uchida ◽  
...  

Among four mycobacteria, Mycobacterium avium, M. intracellulare, M. bovis BCG and Mycobacteroides (My.) abscessus, we established a silkworm infection assay with My. abscessus. When silkworms (fifth-instar larvae, n = 5) were infected through the hemolymph with My. abscessus (7.5 × 107 CFU/larva) and bred at 37 °C, they all died around 40 h after injection. Under the conditions, clarithromycin and amikacin, clinically used antimicrobial agents, exhibited therapeutic effects in a dose-dependent manner. Furthermore, five kinds of microbial compounds, lariatin A, nosiheptide, ohmyungsamycins A and B, quinomycin and steffimycin, screened in an in vitro assay to observe anti-My. abscessus activity from 400 microbial products were evaluated in this silkworm infection assay. Lariatin A and nosiheptide exhibited therapeutic efficacy. The silkworm infection model with My. abscessus is useful to screen for therapeutically effective anti-My. abscessus antibiotics.


2009 ◽  
Vol 89 (2) ◽  
pp. 170-174 ◽  
Author(s):  
K.Y. Yeon ◽  
S.A. Kim ◽  
Y.H. Kim ◽  
M.K. Lee ◽  
D.K. Ahn ◽  
...  

Curcumin has diverse therapeutic effects, such as anti-inflammatory, anti-oxidant, anti-cancer, and antimicrobial activities. The vanilloid moiety of curcumin is considered important for activation of the transient receptor potential vanilloid 1 (TRPV1), which plays an important role in nociception. However, very little is known about the effects of curcumin on nociception. In the present study, we investigated whether the anti-nociceptive effects of curcumin are mediated via TRPV1 by using nociceptive behavioral studies and in vitro whole-cell patch-clamp recordings in the trigeminal system. Subcutaneous injection of capsaicin in the vibrissa pad area of rats induced thermal hyperalgesia. Intraperitoneally administered curcumin blocked capsaicin-induced thermal hyperalgesia in a dose-dependent manner. Whereas curcumin reduced capsaicin-induced currents in a dose-dependent manner in both trigeminal ganglion neurons and TRPV1-expressing HEK 293 cells, curcumin did not affect heat-induced TRPV1 currents. Taken together, our results indicate that curcumin blocks capsaicin-induced TRPV1 activation and thereby inhibits TRPV1-mediated pain hypersensitivity.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


This trial research was performed to discuss the immune-influence of Melaleuca leucadendra ‘paper-bark tree’ dried leaves which is an important medical plant known in many regions in the world. The leaves were dissolved in a mixture of (ethanol + water) (3:1) mixture, then filtered, evaporated and dried under reduced pressure to obtain leaves extract. The macrophages of blood derived origin were provided from rats and mixed with three different leaves extracts doses in tissue culture plates and incubated then stained with fluorescent acridine orange and examined under fluorescent microscope to assess the phagocytic and killing potency. The wells contents were aspirated and assayed for nitric oxide and interleukin-2 levels. The results displayed an obvious increase in phagocytic, killing performance as well as nitric oxide and IL-2 level production than control in a dose dependent manner. The obtained results suggested the immune-stimulant impact of the paper-bark tree leaves.


2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


Sign in / Sign up

Export Citation Format

Share Document