scholarly journals Ginsenoside-Rb1 Protects Hypoxic- and Ischemic-Damaged Cardiomyocytes by Regulating Expression of miRNAs

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xu Yan ◽  
Jinrong Xue ◽  
Hongjin Wu ◽  
Shengqi Wang ◽  
Yuna Liu ◽  
...  

Ginsenoside (GS-Rb1) is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) were first isolated, cultured, and then incubated with or without GS-Rb1 (2.5–40μM)in vitrounder conditions of hypoxia and ischemia. Cell growth, proliferation, and apoptosis were detected by MTT and flow cytometry. Expressions of various microRNAs were analyzed by real-time PCR. Compared with that of the control group, GS-Rb1 significantly decreased cell death in a dose-dependent manner and expressions of mir-1, mir-29a, and mir-208 obviously increased in the experimental model groups. In contrast, expressions of mir-21 and mir-320 were significantly downregulated and GS-Rb1 could reverse the differences in a certain extent. The miRNAs might be involved in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes. The effect might be based on the upregulation of mir-1, mir-29a, and mir-208 and downregulation of mir-21 and mir-320. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.

2015 ◽  
Vol 35 (2) ◽  
pp. 767-777 ◽  
Author(s):  
Jichun Wang ◽  
Xiaorong Hu ◽  
Jing Xie ◽  
Weipan Xu ◽  
Hong Jiang

Backgroud/Aims: The aim of the study was to evaluate the effects of beta1-adrenergic receptors (β1-ARs) -mediated nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase-1 (HO-1)-high mobility group box 1 protein (HMGB1) axis regulation in hypoxia/reoxygenation (H/R)-induced neonatal rat cardiomyocytes. Methods: The neonatal cultured cardiomyocytes were concentration-dependently pretreated by dobutamine (DOB), a selective β1-adrenergic receptor agonist, in the absence and/or presence of LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor), SB203580 (a p38mitogen-activated-protein kinase (p38MAPK) inhibitor), Nrf2siRNA and HO-1siRNA, respectively, and then treated by H/R. The effects and mechanisms by which H/R-induced cardiomyocytes injury were evaluated. Results: Significant increase of HO-1 was found in neonatal cultured cardiomyocytes treated with DOB, when compared to the control group. Significant change for Nrf2 translocation was also revealed in neonatal cultured cardiomyocytes treated with DOB. Insignificant decreases of NF-kappaB p65 activation and HMGB1 release were observed in H/R-induced neonatal cultured cardiomyocytes treated with DOB, when compared to the control group. Importantly, DOB treatment significantly increased the cell viability and decreased the levels of LDH and MDA in H/R-induced cardiomyocytes injury. However, DOB failed to increase HO-1, inhibit NF-kappaB p65 activation, prevent HMGB1 release and attenuate H/R-induced cardiomyocytes injury when the cultured cardiomyocytes were pretreated by Nrf2siRNA, HO-1siRNA, PI3K inhibitor (LY294002) and p38MAPK inhibitor (SB203580), respectively. Conclusions: β1-ARs-mediated Nrf2-HO-1-HMGB1 axis regulation plays a critical protective role in H/R-induced neonatal rat cardiomyocytes injury in vitro via PI3K/p38MAPK signaling pathway.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2005 ◽  
Vol 67 (2) ◽  
pp. 216-224 ◽  
Author(s):  
N LALEVEE ◽  
M REBSAMEN ◽  
S BARRERELEMAIRE ◽  
E PERRIER ◽  
J NARGEOT ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Yan ◽  
Jinwen Tian ◽  
Hongjin Wu ◽  
Yuna Liu ◽  
Jianxun Ren ◽  
...  

Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytesin vitroand the mitochondrial apoptotic pathway mediated mechanism.Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit.Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3.Conclusion. Administration of GS-Rb1 during H/Iin vitrois involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.


2003 ◽  
Vol 284 (2) ◽  
pp. R550-R557 ◽  
Author(s):  
Roy D. Goldfarb ◽  
Thomas S. Parker ◽  
Daniel M. Levine ◽  
Dana Glock ◽  
Imran Akhter ◽  
...  

Lipoprotein phospholipid (PL) plays a major role in neutralization of endotoxin. This study tested the hypothesis that prophylactic administration of a PL-enriched emulsion (PRE), which augments PL content of serum lipoproteins and neutralizes endotoxin in vitro, would preserve cardiovascular function and improve survival in porcine septic peritonitis. A control group was compared with low-, mid-, and high-dose treatment groups that received PRE by primed continuous infusion for 48 h. A fibrin clot containing live Escherichia coli 0111.B4 was implanted intraperitoneally 30 min after the priming dose. Survival increased in a dose-dependent manner and was correlated with serum PL. Infused PL was associated with high-density lipoprotein in the low-dose group and all serum lipoproteins at higher doses. Treatment significantly lowered serum endotoxin and tumor necrosis factor (TNF)-α, preserved cardiac output and ejection fraction, and attenuated increases in systemic and pulmonary vascular resistances. This study demonstrated that augmentation of lipoprotein PL via administration of PRE improved survival and offered a novel therapeutic approach to sepsis.


2007 ◽  
pp. 559-569
Author(s):  
X Gao ◽  
X Xu ◽  
J Pang ◽  
C Zhang ◽  
JM Ding ◽  
...  

Glutamate is a well-characterized excitatory neurotransmitter in the central nervous system (CNS). Recently, glutamate receptors (GluRs) were also found in peripheral tissues, including the heart. However, the function of GluRs in peripheral organs remains poorly understood. In the present study, we found that N-methyl-D-aspartate (NMDA) could increase intracellular calcium ([Ca(2+)]i) level in a dose-dependent manner in cultured neonatal rat cardiomyocytes. NMDA at 10(-4) M increased the levels of reactive oxygen species (ROS), cytosolic cytochrome c (cyto c), and 17-kDa caspase-3, but depolarized mitochondrial membrane potential, leading to cardiomyocyte apoptosis. In addition, NMDA treatment induced an increase in bax mRNA but a decrease in bcl-2 mRNA expression in the cardiomyocytes. The above effects of NMDA were blocked by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), and by ROS scavengers glutathione (GSH) and N-acetylcystein (NAC). These results suggest that stimulation of NMDA receptor in the cardiomyocyte may lead to apoptosis via a Ca(2+), ROS, and caspase-3 mediated pathway. These findings suggest that NMDA receptor may play an important role in myocardial pathogenesis.


2019 ◽  
Vol 518 (3) ◽  
pp. 500-505 ◽  
Author(s):  
Ashraf Yusuf Rangrez ◽  
Lucia Kilian ◽  
Katharina Stiebeling ◽  
Sven Dittmann ◽  
Eric Schulze-Bahr ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Guoliang Meng ◽  
Liping Xie ◽  
Yong Ji

Rationale: H 2 S is a gasotransmitter that regulates multiple cardiovascular functions. Krüppel-like transcription factor (KLF) exerts diverse functions in the cardiovascular system. Objectives: The aim of present study was to investigate the effect of hydrogen sulfide (H 2 S) on myocardial hypertrophy. Methods and results: Myocardial samples of 22 patients with left ventricle hypertrophy were collected and underwent histological and molecular biological analysis. Spontaneously hypertensive rats (SHR) and neonatal rat cardiomyocytes were studied for functional and signaling response to GYY4137, a H 2 S-releasing compound. Expression of cystathionine -lyase (CSE), a main enzyme for H 2 S generation in human heart, decreased in human hypertrophic myocardium, while KLF5 expression increased. In SHR treated with GYY4137 for 4 weeks, myocardial hypertrophy was inhibited as evidenced by improvement in cardiac structural parameters, heart mass index, size of cardiac myocytes and expression of atrial natriuretic peptide (ANP). Levels of oxidative stress and phosphorylation of mitogen-activated protein kinases were also decreased after H 2 S treatment. H 2 S diminished expression of the KLF5 in myocardium of SHR and in neonatal rat cardiomyocytes rendered hypertrophy by angiotensin II (Ang II). H 2 S also inhibited ANP promoter activity and ANP expression in Ang II-induced neonatal rat cardiomyocyte hypertrophy, and these effects were suppressed by KLF5 knockdown. KLF5 promoter activity was increased by Ang II stimulation, and this was reversed by H 2 S. H 2 S also decreased activity of specificity protein-1 (SP-1) binding to the KLF5 promoter and attenuated KLF5 nuclear translocation by Ang II stimulation. Conclusion: H 2 S attenuated myocardial hypertrophy, which might be related to inhibiting oxidative stress and decreasing ANP transcription activity in a KLF5-dependent manner.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Derk Frank ◽  
Robert Frauen ◽  
Christiane Hanselmann ◽  
Christian Kuhn ◽  
Rainer Will ◽  
...  

In order to identify new molecular mediators of cardiomyocyte hypertrophy, we performed a genome wide mRNA microarray screen of biomechanically stretched neonatal rat cardiomyocytes (NRCM). We found the novel sarcomeric LIM protein Dyxin/Lmcd1 being significantly upregulated (5.6x, p<0.001). Moreover, Dyxin was also significantly induced in several mouse models of myocardial hypertrophy including aortic banding, calcineurin overexpression and angiotensin stimulation, suggesting a potential role as a mediator of cardiac hypertrophy. To further test this hypothesis, we adenovirally overexpressed Dyxin in NRCM which potently induced cellular hypertrophy (150%, p<0.001) and the hypertrophic gene program (ANF, BNP). Consistent with an induction of calcineurin signalling, the calcineurin-responsive gene Rcan1– 4 (MCIP1.4) was found significantly upregulated (3.2x, p<0.001). Conversely, knockdown of Dyxin (−75% on protein level) via miRNA completely blunted the hypertrophic response to hypertrophic stimuli, including stretch and PE (both p<0.001). Furthermore, PE-mediated activation of calcineurin signaling (Upregulation of Rcan1– 4 by 7.3x, p<0.001) was completely blocked by knockdown of Dyxin. To confirm these results in vivo, we next generated transgenic mice with cardiac-restricted overexpression of Dyxin using the α -MHC promoter. Despite normal cardiac function as assessed by echocardiography, adult transgenic mice displayed significant cardiac hypertrophy in morphometrical analyses (3.9 vs. 3.5 mg/g LV/heart weight, n=8–11, p<0.05). This finding was supplemented by a robust induction of the hypertrophic gene program including ANF (3.7-fold, n=6, p=0.01) and α -skeletal actin (2.8-fold, n=6, p<0.05). Likewise, Rcan1– 4 was found upregulated (+112%, n=5, p<0.05), Taken together, we show that the novel sarcomeric z-disc protein Dyxin/Lmcd1 is significantly upregulated in several models of cardiac hypertrophy and potently induces cardiomyocyte hypertrophy both in vitro and in vivo. Mechanistically, Lmcd1/Dyxin appears to signal through the calcineurin pathway.


Sign in / Sign up

Export Citation Format

Share Document