scholarly journals Design, characterization and in vivo functioning of a light-dependent histidine protein kinase in the yeast Saccharomyces cerevisiae

AMB Express ◽  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Aleksandra Bury ◽  
Klaas J. Hellingwerf
1991 ◽  
Vol 11 (6) ◽  
pp. 3027-3036 ◽  
Author(s):  
M Ramirez ◽  
R C Wek ◽  
A G Hinnebusch

The GCN4 gene of the yeast Saccharomyces cerevisiae encodes a transcriptional activator of amino acid biosynthetic genes that is regulated at the translational level according to the availability of amino acids. GCN2 is a protein kinase required for increased translation of GCN4 mRNA in amino acid-starved cells. Centrifugation of cell extracts in sucrose gradients indicated that GCN2 comigrates with ribosomal subunits and polysomes. The fraction of GCN2 cosedimenting with polysomes was reduced under conditions in which polysomes were dissociated, suggesting that GCN2 is physically bound to these structures. When the association of 40S and 60S subunits was prevented by omitting Mg2+ from the gradient, almost all of the GCN2 comigrated with 60S ribosomal subunits, and it remained bound to these particles during gel electrophoresis under nondenaturing conditions. GCN2 could be dissociated from 60S subunits by 0.5 M KCl, suggesting that it is loosely associated with ribosomes rather than being an integral ribosomal protein. Accumulation of GCN2 on free 43S-48S particles and 60S subunits occurred during polysome runoff in vitro and under conditions of reduced growth rate in vivo. These observations, plus the fact that GCN2 shows preferential association with free ribosomal subunits during exponential growth, suggest that GCN2 interacts with ribosomes during the translation initiation cycle. The extreme carboxyl-terminal segment of GCN2 is essential for its interaction with ribosomes. These sequences are also required for the ability of GCN2 to stimulate GCN4 translation in vivo, leading us to propose that ribosome association by GCN2 is important for its access to substrates in the translational machinery or for detecting uncharged tRNA in amino acid-starved cells.


1999 ◽  
Vol 145 (7) ◽  
pp. 1381-1394 ◽  
Author(s):  
Jae-hyun Kim ◽  
Jung-seog Kang ◽  
Clarence S.M. Chan

The conserved Ipl1 protein kinase is essential for proper chromosome segregation and thus cell viability in the budding yeast Saccharomyces cerevisiae. Its human homologue has been implicated in the tumorigenesis of diverse forms of cancer. We show here that sister chromatids that have separated from each other are not properly segregated to opposite poles of ipl1-2 cells. Failures in chromosome segregation are often associated with abnormal distribution of the spindle pole–associated Nuf2-GFP protein, thus suggesting a link between potential spindle pole defects and chromosome missegregation in ipl1 mutant cells. A small fraction of ipl1-2 cells also appears to be defective in nuclear migration or bipolar spindle formation. Ipl1 associates, probably directly, with the novel and essential Sli15 protein in vivo, and both proteins are localized to the mitotic spindle. Conditional sli15 mutant cells have cytological phenotypes very similar to those of ipl1 cells, and the ipl1-2 mutation exhibits synthetic lethal genetic interaction with sli15 mutations. sli15 mutant phenotype, like ipl1 mutant phenotype, is partially suppressed by perturbations that reduce protein phosphatase 1 function. These genetic and biochemical studies indicate that Sli15 associates with Ipl1 to promote its function in chromosome segregation.


1991 ◽  
Vol 11 (6) ◽  
pp. 3027-3036 ◽  
Author(s):  
M Ramirez ◽  
R C Wek ◽  
A G Hinnebusch

The GCN4 gene of the yeast Saccharomyces cerevisiae encodes a transcriptional activator of amino acid biosynthetic genes that is regulated at the translational level according to the availability of amino acids. GCN2 is a protein kinase required for increased translation of GCN4 mRNA in amino acid-starved cells. Centrifugation of cell extracts in sucrose gradients indicated that GCN2 comigrates with ribosomal subunits and polysomes. The fraction of GCN2 cosedimenting with polysomes was reduced under conditions in which polysomes were dissociated, suggesting that GCN2 is physically bound to these structures. When the association of 40S and 60S subunits was prevented by omitting Mg2+ from the gradient, almost all of the GCN2 comigrated with 60S ribosomal subunits, and it remained bound to these particles during gel electrophoresis under nondenaturing conditions. GCN2 could be dissociated from 60S subunits by 0.5 M KCl, suggesting that it is loosely associated with ribosomes rather than being an integral ribosomal protein. Accumulation of GCN2 on free 43S-48S particles and 60S subunits occurred during polysome runoff in vitro and under conditions of reduced growth rate in vivo. These observations, plus the fact that GCN2 shows preferential association with free ribosomal subunits during exponential growth, suggest that GCN2 interacts with ribosomes during the translation initiation cycle. The extreme carboxyl-terminal segment of GCN2 is essential for its interaction with ribosomes. These sequences are also required for the ability of GCN2 to stimulate GCN4 translation in vivo, leading us to propose that ribosome association by GCN2 is important for its access to substrates in the translational machinery or for detecting uncharged tRNA in amino acid-starved cells.


1986 ◽  
Vol 6 (2) ◽  
pp. 688-702 ◽  
Author(s):  
J M Ivy ◽  
A J Klar ◽  
J B Hicks

Mating type in the yeast Saccharomyces cerevisiae is determined by the MAT (a or alpha) locus. HML and HMR, which usually contain copies of alpha and a mating type information, respectively, serve as donors in mating type interconversion and are under negative transcriptional control. Four trans-acting SIR (silent information regulator) loci are required for repression of transcription. A defect in any SIR gene results in expression of both HML and HMR. The four SIR genes were isolated from a genomic library by complementation of sir mutations in vivo. DNA blot analysis suggests that the four SIR genes share no sequence homology. RNA blots indicate that SIR2, SIR3, and SIR4 each encode one transcript and that SIR1 encodes two transcripts. Null mutations, made by replacement of the normal genomic allele with deletion-insertion mutations created in the cloned SIR genes, have a Sir- phenotype and are viable. Using the cloned genes, we showed that SIR3 at a high copy number is able to suppress mutations of SIR4. RNA blot analysis suggests that this suppression is not due to transcriptional regulation of SIR3 by SIR4; nor does any SIR4 gene transcriptionally regulate another SIR gene. Interestingly, a truncated SIR4 gene disrupts regulation of the silent mating type loci. We propose that interaction of at least the SIR3 and SIR4 gene products is involved in regulation of the silent mating type genes.


2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


2006 ◽  
Vol 5 (8) ◽  
pp. 1378-1387 ◽  
Author(s):  
Adam K. Kallmeyer ◽  
Kim M. Keeling ◽  
David M. Bedwell

ABSTRACT Protein synthesis requires a large commitment of cellular resources and is highly regulated. Previous studies have shown that a number of factors that mediate the initiation and elongation steps of translation are regulated by phosphorylation. In this report, we show that a factor involved in the termination step of protein synthesis is also subject to phosphorylation. Our results indicate that eukaryotic release factor 1 (eRF1) is phosphorylated in vivo at serine 421 and serine 432 by the CK2 protein kinase (previously casein kinase II) in the budding yeast Saccharomyces cerevisiae. Phosphorylation of eRF1 has little effect on the efficiency of stop codon recognition or nonsense-mediated mRNA decay. Also, phosphorylation is not required for eRF1 binding to the other translation termination factor, eRF3. In addition, we provide evidence that the putative phosphatase Sal6p does not dephosphorylate eRF1 and that the state of eRF1 phosphorylation does not influence the allosuppressor phenotype associated with a sal6Δ mutation. Finally, we show that phosphorylation of eRF1 is a dynamic process that is dependent upon carbon source availability. Since many other proteins involved in protein synthesis have a CK2 protein kinase motif near their extreme C termini, we propose that this represents a common regulatory mechanism that is shared by factors involved in all three stages of protein synthesis.


1991 ◽  
Vol 11 (10) ◽  
pp. 5212-5221
Author(s):  
B Jehn ◽  
R Niedenthal ◽  
J H Hegemann

In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.


1994 ◽  
Vol 14 (1) ◽  
pp. 189-199
Author(s):  
D S Pederson ◽  
T Fidrych

After each round of replication, new transcription initiation complexes must assemble on promoter DNA. This process may compete with packaging of the same promoter sequences into nucleosomes. To elucidate interactions between regulatory transcription factors and nucleosomes on newly replicated DNA, we asked whether heat shock factor (HSF) could be made to bind to nucleosomal DNA in vivo. A heat shock element (HSE) was embedded at either of two different sites within a DNA segment that directs the formation of a stable, positioned nucleosome. The resulting DNA segments were coupled to a reporter gene and transfected into the yeast Saccharomyces cerevisiae. Transcription from these two plasmid constructions after induction by heat shock was similar in amount to that from a control plasmid in which HSF binds to nucleosome-free DNA. High-resolution genomic footprint mapping of DNase I and micrococcal nuclease cleavage sites indicated that the HSE in these two plasmids was, nevertheless, packaged in a nucleosome. The inclusion of HSE sequences within (but relatively close to the edge of) the nucleosome did not alter the position of the nucleosome which formed with the parental DNA fragment. Genomic footprint analyses also suggested that the HSE-containing nucleosome was unchanged by the induction of transcription. Quantitative comparisons with control plasmids ruled out the possibility that HSF was bound only to a small fraction of molecules that might have escaped nucleosome assembly. Analysis of the helical orientation of HSE DNA in the nucleosome indicated that HSF contacted DNA residues that faced outward from the histone octamer. We discuss the significance of these results with regard to the role of nucleosomes in inhibiting transcription and the normal occurrence of nucleosome-free regions in promoters.


1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


Sign in / Sign up

Export Citation Format

Share Document