scholarly journals On the effects of spatial resolution on effective distance measurement in digital landscapes

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Rachel Mundeli Murekatete ◽  
Takeshi Shirabe

Abstract Background Connectivity is an important landscape attribute in ecological studies and conservation practices and is often expressed in terms of effective distance. If the cost of movement of an organism over a landscape is effectively represented by a raster surface, effective distances can be equated with the cost-weighted distance of least-cost paths. It is generally recognized that this measure is sensitive to the grid’s cell size, but little is known if it is always sensitive in the same way and to the same degree and if not, what makes it more (or less) sensitive. We conducted computational experiments with both synthetic and real landscape data, in which we generated and analyzed large samples of effective distances measured on cost surfaces of varying cell sizes derived from those data. The particular focus was on the statistical behavior of the ratio—referred to as ‘accuracy indicator’—of the effective distance measured on a lower-resolution cost surface to that measured on a higher-resolution cost surface. Results In the experiment with synthetic cost surfaces, the sample values of the accuracy indicator were generally clustered around 1, but slightly greater with the absence of linear sequences (or barriers) of high-cost or inadmissible cells and smaller with the presence of such sequences. The latter tendency was more dominant, and both tendencies became more pronounced as the difference between the spatial resolutions of the associated cost surfaces increased. When two real satellite images (of different resolutions with fairly large discrepancies) were used as the basis of cost estimation, the variation of the accuracy indicator was found to be substantially large in the vicinity (1500 m) of the source but decreases quickly with an increase in distance from it. Conclusions Effective distances measured on lower-resolution cost surfaces are generally highly correlated with—and useful predictors of—effective distances measured on higher-resolution cost surfaces. This relationship tends to be weakened when linear barriers to dispersal (e.g., roads and rivers) exist, but strengthened when moving away from sources of dispersal and/or when linear barriers (if any) are detected by other presumably more accessible and affordable sources such as vector line data. Thus, if benefits of high-resolution data are not likely to substantially outweigh their costs, the use of lower resolution data is worth considering as a cost-effective alternative in the application of least-cost path modeling to landscape connectivity analysis.

Author(s):  
Ehsan Fereshtehnejad ◽  
Jieun Hur ◽  
Abdollah Shafieezadeh ◽  
Mike Brokaw ◽  
Brad Noll ◽  
...  

A primary goal of bridge management systems is to identify maintenance, repair, and replacement (MR&R) strategies that maximize benefits and minimize losses, often expressed in terms of cost. A major factor that greatly impacts outcomes of these frameworks, that is, the most appropriate MR&R strategies, is the cost of implementation and associated consequences of performing such actions. Given that the inventory of bridges maintained by a state department of transportation (DOT) is significantly large, this study is aimed at developing a systematic procedure to reliably estimate the costs through effective utilization of DOTs’ databases. The considered costs include agency cost of administration, engineering, and mobilization; agency direct cost of performing MR&R actions; agency cost of maintenance of traffic; and user cost incurred from traffic delays, vehicle operation, and excess emissions. The study develops a set of models to estimate the duration of various MR&R work plans. These models are subsequently used to propose analytical formulations and algorithms for the estimation of the above costs. The proposed procedures are employed to estimate the agency and user costs associated with a series of light to extensive repair actions for three bridges in Ohio. Independent calculation of some of these costs by Ohio DOT engineers indicated good agreement with results obtained from the proposed systematic methods. The verified procedures for cost estimation developed in this study enable state DOTs and other entities to reliably estimate implementation costs of actions for their large inventory of bridges and identify the most cost-effective MR&R strategies and work plans.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4370
Author(s):  
Essam Shehab ◽  
Arshyn Meiirbekov ◽  
Akniyet Amantayeva ◽  
Aidar Suleimen ◽  
Serik Tokbolat ◽  
...  

Carbon Fibre Reinforced Polymers (CFRPs) are commonly used materials in manufacturing components and products in the automotive, aerospace, and wind energy industries generating thousands of tons of waste, thus creating a threat to the environment if not recycled. Therefore, it is important for both academia and industry to investigate various ways of recycling this material. However, there is an urgent need for a reliable cost predication system to assist in making informed decisions, planning sustainable treatment, and developing pricing strategies for different waste treatment scenarios. This research paper presents the development of a fuzzy logic-based system to perform cost estimation of recycling processes of the CFRP. The developed system has taken into consideration uncertainties such as the characteristics of End of Life (EoL) material including its size and weight, its origin and diversity of existing recycling methods, and quantity of recycling waste. Cost drivers were divided into categories such as dismantling, transportation, operation, and capital cost. The system was developed by creating 243 fuzzy rules and three levels of fuzzy sets. Moreover, an interactive user-friendly interface was developed to enable the user to use the system easily and efficiently. Finally, case study results were examined to compare the whole life recycling cost of four different recycling technologies in various scenarios of waste treatment. The developed fuzzy logic-based system has the capability in evaluating the cost structure of CFRP recycling techniques and take into consideration uncertainty factors. Hence, a major contribution of the developed system is its provision of the heuristic rules that aid the decision-making process for selecting a cost-effective recycling method. The visualisation facility of the developed system is also a useful tool in enabling potential users to forecast the cost of the CFRP recycling techniques upfront.


2017 ◽  
Vol 34 (2) ◽  
pp. 249-267 ◽  
Author(s):  
Paul E. Johnston ◽  
James R. Jordan ◽  
Allen B. White ◽  
David A. Carter ◽  
David M. Costa ◽  
...  

AbstractA vertically pointing radar for monitoring radar brightband height (BBH) has been developed. This new radar utilizes frequency-modulated continuous wave (FM-CW) techniques to provide high-resolution data at a fraction of the cost of comparable pulsed radars. This S-band radar provides details of the vertical structure of precipitating clouds, with full Doppler information. Details of the radar design are presented along with observations from one storm. Results from a calibration using these storm data show the radar meets the design goals. Eleven of these radars have been deployed and provide BBH data in near–real time.


Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


Phlebologie ◽  
2007 ◽  
Vol 36 (06) ◽  
pp. 309-312 ◽  
Author(s):  
T. Schulz ◽  
M. Jünger ◽  
M. Hahn

Summary Objective: The goal of the study was to assess the effectiveness and patient tolerability of single-session, sonographically guided, transcatheter foam sclerotherapy and to evaluate its economic impact. Patients, methods: We treated 20 patients with a total of 22 varicoses of the great saphenous vein (GSV) in Hach stage III-IV, clinical stage C2-C5 and a mean GSV diameter of 9 mm (range: 7 to 13 mm). We used 10 ml 3% Aethoxysklerol®. Additional varicoses of the auxiliary veins of the GSV were sclerosed immediately afterwards. Results: The occlusion rate in the treated GSVs was 100% one week after therapy as demonstrated with duplex sonography. The cost of the procedure was 207.91 E including follow-up visit, with an average loss of working time of 0.6 days. After one year one patient showed clinical signs of recurrent varicosis in the GSV; duplex sonography showed reflux in the region of the saphenofemoral junction in a total of seven patients (32% of the treated GSVs). Conclusion: Transcatheter foam sclerotherapy of the GSV is a cost-effective, safe method of treating varicoses of GSV and broadens the spectrum of therapeutic options. Relapses can be re-treated inexpensively with sclerotherapy.


2019 ◽  
Vol 2 (4) ◽  
pp. 260-266
Author(s):  
Haru Purnomo Ipung ◽  
Amin Soetomo

This research proposed a model to assist the design of the associated data architecture and data analytic to support talent forecast in the current accelerating changes in economy, industry and business change due to the accelerating pace of technological change. The emerging and re-emerging economy model were available, such as Industrial revolution 4.0, platform economy, sharing economy and token economy. Those were driven by new business model and technology innovation. An increase capability of technology to automate more jobs will cause a shift in talent pool and workforce. New business model emerge as the availabilityand the cost effective emerging technology, and as a result of emerging or re-emerging economic models. Both, new business model and technology innovation, create new jobs and works that have not been existed decades ago. The future workers will be faced by jobs that may not exist today. A dynamics model of inter-correlation of economy, industry, business model and talent forecast were proposed. A collection of literature review were conducted to initially validate the model.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


Author(s):  
W. C. Solomon ◽  
M. T. Lilly ◽  
J. I. Sodiki

The development and evaluation of brake pads using groundnut shell (GS) particles as substitute material for asbestos were carried out in this study. This was with a view to harnessing the properties of GS, which is largely deposited as waste, and in replacing asbestos which is carcinogenic in nature despite its good tribological and mechanical properties. Two sets of composite material were developed using varying particle sizes of GS as filler material, with phenolic resin as binder with percentage compositions of 45% and 50% respectively. Results obtained indicate that the compressive strength and density increase as the sieve size of the filler material decreases, while water and oil absorption rates increase with an increase in sieve size of GS particle. This study also indicates that the cost of producing brake pad can be reduced by 19.14 percent if GS is use as filler material in producing brake pad. The results when compared with those of asbestos and industrial waste showed that GS particle can be used as an effective replacement for asbestos in producing automobile brake pad. Unlike asbestos, GS-based brake pads are environmental friendly, biodegradable and cost effective.


Sign in / Sign up

Export Citation Format

Share Document