scholarly journals Lignocellulose as an insoluble fiber source in poultry nutrition: a review

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ilen Röhe ◽  
Jürgen Zentek

AbstractExtensive research in recent years into the use of various fiber sources in poultry nutrition has led to the perception that dietary fiber is more than a simple diet diluent. Several studies showed that the feeding of insoluble fiber sources such as oat hulls, sunflower hulls or wood shavings may affect digestive physiology and function improving chickens health and growth performance. In this context, the effect of lignocellulose as an insoluble dietary fiber source is increasingly being investigated. Lignocellulose is a component of plant cell walls and consists mainly of the insoluble carbohydrate polymers cellulose and hemicelluloses as well as the phenolic polymer lignin. Lignocellulose is chemically and physicochemically different from other insoluble fiber sources and thus possibly has different effects on poultry compared to traditional fiber sources. Several studies investigated the effect of dietary lignocellulose on growth performance, nutrient digestibility, gastrointestinal tract development and intestinal microbiota in broilers and laying hens. Studies differed in terms of feed formulation and lignocellulose inclusion level as well as products of different suppliers were used. The results obtained are inconsistent; beneficial, indifferent or detrimental effects of feeding lignocellulose were observed, so that a final assessment of lignocellulose as a “novel” insoluble fiber source is difficult. This review article summarizes the results of studies in connection with the feeding of lignocellulose to poultry, compares them with those that have used other insoluble fiber sources and illuminates the possible mechanisms of action.

2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Jesus A Acosta ◽  
Hans H Stein ◽  
John F Patience

Abstract The objective of this study was to determine the differences in response to distillers dried grains with solubles (DDGS) level under constant nutrient or floating nutrient concentrations. A total of 21 ileal-cannulated gilts (33.1 ± 0.4 kg body weight) were randomly allotted to one of seven dietary treatments in a 3-period incomplete Latin square design (n = 9). Treatments consisted of a 0% DDGS basal diet, plus diets containing 15%, 30%, or 45% DDGS. Diets were formulated using one of two different formulation methods: 1) constant nutrient (CNU) where nutrients were held equal to the basal diet or 2) constant ingredients (CIN) where DDGS were added at the expense of corn and all other ingredients remained constant, so nutrient levels were allowed to “float.” Chromic oxide was added to the diets at 0.5% as an indigestible marker. Increasing the level of DDGS decreased the apparent ileal digestibility (AID) of dry matter (DM), gross energy (GE), starch, dispensable amino acids (AA), and fiber components (P < 0.050). The decrease in the AID of Lys, Met, Thr, and Trp was more pronounced under CNU compared with the CIN formulation method (P < 0.050). The decrease in the AID of hemicellulose was less pronounced under CNU compared with the CIN formulation method (P = 0.045). There was a DDGS level × formulation method interaction for the AID of acid hydrolyzed ether extract (AEE; P = 0.015); for the CNU formulation method, increasing level of DDGS decreased the AID of AEE from 0% to 30% and remained similar from 30% to 45% DDGS, whereas the CIN had no effect on the AID of AEE. Increasing the level of DDGS decreased the apparent total tract digestibility (ATTD) of DM, GE, and fiber components (P < 0.050), except for acid detergent fiber, which was not affected. The decrease in the ATTD of insoluble dietary fiber and total dietary fiber was less pronounced under CNU compared with CIN (P < 0.050). The ATTD of AEE decreased for CNU compared with CIN (P < 0.010). In conclusion, increasing the insoluble fiber level in the form of DDGS decreased the digestibility of most dietary components, including DM, GE, starch, insoluble fiber, and AA. The CNU and CIN formulation methods are equivalent when evaluating the digestibilities of DM, GE, starch, crude protein, and AA (when they were not added in purified synthetic forms). Differences between CNU and CIN formulation methods were detected for the digestibility of insoluble fiber, fat, and essential AA (when added as crystalline AA).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rajesh Jha ◽  
Pravin Mishra

AbstractDietary fiber (DF) was considered an antinutritional factor due to its adverse effects on feed intake and nutrient digestibility. However, with increasing evidence, scientists have found that DF has enormous impacts on the gastrointestinal tract (GIT) development, digestive physiology, including nutrient digestion, fermentation, and absorption processes of poultry. It may help maintain the small and large intestine’s integrity by strengthening mucosal structure and functions and increasing the population and diversity of commensal bacteria in the GIT. Increasing DF content benefits digestive physiology by stimulating GIT development and enzyme production. And the inclusion of fiber at a moderate level in diets also alters poultry growth performance. It improves gut health by modulating beneficial microbiota in the large intestine and enhancing immune functions. However, determining the source, type, form, and level of DF inclusion is of utmost importance to achieve the above-noted benefits. This paper critically reviews the available information on dietary fibers used in poultry and their effects on nutrient utilization, GIT development, gut health, and poultry performance. Understanding these functions will help develop nutrition programs using proper DF at an appropriate inclusion level that will ultimately lead to enhanced DF utilization, overall health, and improved poultry growth performance. Thus, this review will help researchers and industry identify the sources, type, form, and amount of DF to be used in poultry nutrition for healthy, cost-effective, and eco-friendly poultry production.


2017 ◽  
Vol 17 (3) ◽  
pp. 627-644 ◽  
Author(s):  
Marianna Flis ◽  
Wiesław Sobotka ◽  
Zofia Antoszkiewicz

Abstract The present review summarizes the results of 37 experiments in which different types and levels (from 0.5 to 29.7%) of fibrous supplements were used in the formulation of diets for weaned piglets. Diets were supplemented with different sources of insoluble dietary fiber (iDF), soluble dietary fiber (sDF), or mixed DF sources. Most of the applied DF sources decreased the ileal and fecal organic matter digestibility, and they often lowered crude protein digestibility. A moderate addition (1.5-8%) of iDF sources increased average daily feed intake (ADFI) and, frequently, average daily gains (ADG). Sources of sDF as well as high inclusion levels of fiber-rich feeds tended to decrease ADFI and ADG. Improved fecal consistency, decreased diarrhea incidence and antibiotic interventions were confirmed in piglets fed diets with added lignocellulose, cooked or raw oat hulls and wheat bran. The dietary inclusion of iDF rather than sDF sources improved gastrointestinal tract (GIT) development, enzyme activity and gut morphology. An increase in the counts of beneficial gut microbiota and the concentrations of short-chain fatty acids was stimulated by diets with addition iDF or sDF sources. Such diets also slowed down proteolytic fermentation which negatively affects the colonic mucosa. Some research findings indicate that iDF sources improve intestinal barrier function. The analyzed experimental data suggest that the addition of 1.5-2% of a lignocellulose preparation, 2% of oat hulls, 4-8% of coarse wheat bran to diets for weaned piglets may be recommended to promote GIT development and health, and to improve growth performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tingting Chen ◽  
Daiwen Chen ◽  
Gang Tian ◽  
Ping Zheng ◽  
Xiangbing Mao ◽  
...  

The main purpose of the present study was to assess the effect of soluble and insoluble fiber on colonic bacteria and intestinal barrier function in a piglet model. A total of 24 piglets (25 ± 1 d old; 7.50 ± 0.31 kg) were randomly allotted to 4 treatments: basal diet (control, CON), 1% insoluble dietary fiber (IDF) diet, 1% soluble dietary fiber (SDF) diet, and 0.5% insoluble fiber + 0.5% soluble dietary fiber (MDF) diet. The trial lasted 28 days. SDF-fed piglets showed a higher P<0.05 bacterial a-diversity (observed_species, chao1, and ACE) and a higher relative abundance of Proteobacteria and Actinobacteria, Solobacterium, Succinivibrio, Blautia, and Atopobium in colonic digesta than CON, IDF, and MDF groups P<0.05. At the same time, Bacteroidetes, Euryarchaeota, Phascolarctobacterium, Coprococcus_1, and Prevotella_1 were significantly increased in the IDF group when compared with CON, SDF, and MDF groups P<0.05. Furthermore, Bacteroidetes and Enterobacteriaceae, Selenomonas, Phascolarctobacterium, and AlloprevotellaP<0.05 were significantly higher in the MDF group than those in the other three groups P<0.05. SDF diet increased the concentrations of short-chain fatty acid (SCFA) in colonic digesta P<0.05 when compared with the CON group and enhanced weight index of the colon P<0.05 than the CON and IDF groups. Furthermore, compared with the CON group, SDF, IDF, and MDF diets all upregulated the mRNA expressions of claudin-1 (CLDN-1) in colonic mucosa P<0.05, SDF and IDF diets upregulated the mRNA expressions of mucin 2 (MUC2) P<0.05, SDF diet increased mRNA expressions of zonula occludens 1 (ZO-1) and occludin (OCLN), while the IDF group enhanced the secretory immunoglobulin A (sIgA) concentrations P<0.05, respectively. IDF and MDF diets decreased expressions of TNF-αP<0.05. We concluded that the influence of soluble fiber on colonic microbiota was more extensive than that of insoluble fiber. Moreover, soluble fiber could more effectively improve colonic barrier function by upregulating gene expressions of the gut barrier.


BioResources ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1512-1524
Author(s):  
Ji Young Jung ◽  
Jung Min Heo ◽  
Jae-Kyung Yang

Effects of modified insoluble fiber originating from steam-exploded Quercus mongolica were studied relative to growth performance, blood parameters, intestinal morphology, and other intestinal characteristics in poultry broilers. First, the effect of steam-explosion on physicochemical properties of insoluble fiber from Q. mongolica was investigated. Steam-explosion (severity factor Log (Ro) = 3.94) was found to increase the physical properties (water-holding capacity, oil-holding capacity, and swelling capacity) of Q. mongolica chip to different extents. Effects of feeding different concentrations of steam-exploded Q. mongolica on performance characteristics of broilers were investigated. Experimental diets of broilers consisted of a control diet (free of steam-exploded Q. mongolica), and four diets containing 0.5% to 2.0% steam-exploded Q. mongolica (severity factor Log (Ro) = 3.94). A diet containing 1.0% steam-exploded Q. mongolica promoted broiler growth performance (body weight (858.9 g) and improved blood characteristics (130.0 mg/dL), intestinal morphology (V:C ratio 7.50), and organ weights (length of intestine 17.6 cm/100 g body weight).


Author(s):  
C M E Heyer ◽  
L F Wang ◽  
E Beltranena ◽  
R T Zijlstra

Abstract Canola meal (CM) contains less crude protein (CP) and more fiber and anti-nutritional factors (ANF) such as glucosinolates than soybean meal (SBM), and consequently has a lower nutrient digestibility. Therefore, processing strategies that may increase the feeding value of CM, warrant study. In 2 experiments, the effects of extrusion of Brassica napus CM on apparent (AID) and standardized ileal digestibility (SID) of amino acids (AA), apparent total tract digestibility (ATTD) of gross energy (GE) in growing pigs and growth performance and diet digestibility in weaned pigs were assessed. Solvent-extracted CM was extruded using a single-screw extruder at 3 screw speeds, 250 (CM-250), 350 (CM-350) or 450 (CM-450) rpm. In Exp. 1, in a double 4 × 4 Latin square, 8 ileal-cannulated barrows (initial BW, 68.1 kg) were fed corn starch-based diets containing 50% CM or extruded CM. The CM sample contained 43.2% CP, 33.2% total dietary fiber, and 8.9 µmol total glucosinolates/g on dry matter (DM) basis. Extrusion increased (P &lt; 0.05) the AID of CP, reduced (P &lt; 0.05) hindgut fermentation (AHF) of CP, and decreased (P &lt; 0.05) predicted net energy (NE) value of diets. Extrusion increased diet AID and CM SID of most indispensable AA by 3.1 to 5.3%-units. In Exp. 2, 200 weaned pigs (initial BW, 8.3 kg) were fed diets containing 20% SBM, CM, or extruded CM starting 2 wk post-weaning for 3 wk. The CM sample contained 42.7% CP, 28.3% total dietary fiber, and 5.3 µmol total glucosinolates/g DM. Wheat-based diets provided 2.3 Mcal NE/kg and 5.1 g SID Lys/Mcal NE. Dietary inclusion of extruded CM replacing SBM decreased (P &lt; 0.05) diet ATTD of DM, GE and CP, and DE value. Average daily feed intake (ADFI), average daily gain (ADG), and gain:feed (G:F) of pigs did not differ between extruded CM and SBM diets and were not affected by extrusion, but increasing extruder screw speed linearly increased (P &lt; 0.05) ADG for d 1 to 7, and G:F for the entire trial. In conclusion, extrusion increased diet AID and CM SID of AA, but not DE and predicted NE values of CM. However, increasing extruder speed did not further increase SID of most AA of CM in growing pigs. Dietary inclusion of 20% CM or extruded CM did not affect growth performance in weaned pigs.


Sign in / Sign up

Export Citation Format

Share Document