scholarly journals (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease

Microbiome ◽  
2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Thomas W. Buford
2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S833-S833
Author(s):  
Christy S Carter ◽  
Michal Masternak ◽  
Thomas W Buford

Abstract The human intestinal tract (i.e., “gut”) is inhabited by over 100 trillion microorganisms; including over 1000 species of known bacteria. These organisms have co-evolved with humans over millennia to live together for mutual benefit. Though long overlooked in considerations of human health and disease treatment, gut microorganisms are highly involved in numerous metabolic reactions which influence normal host physiology. A variety of biologic, medical, and lifestyle factors appear to contribute to gut dysbiosis in late-life, and interventions specifically designed to target these factors may be useful in restoring microbial balance. Evidence from both clinical and preclinical studies suggests that gut dysbiosis is related to age-related inflammation as well as age-related conditions including frailty, Alzheimer’s disease, and perhaps even longevity. Crosstalk between the gut and multiple organ systems (brain, heart, muscle etc.) may lead to the development of age-related diseases and loss of physiological function, although the signals are not well understood. In this symposium we address the broad topic of the Gut Microbiome and Aging by presenting evidence from multiple model systems (mice, rats and monkeys) and provide a forum to discuss critical areas of research for moving forward.


Author(s):  
Rohit Sharma

The significance of diversity, composition, and functional attributes of the gut microbiota is recognized in human health and disease. Studies have also shown that the gut microbiota is related to human aging, and a causal relationship between gut microflora dysbiosis and chronic age-related disorders is also becoming apparent. Further, emerging evidence indicates that age-associated changes in the gut microbiome are predictors of human survival and longevity. Recent advances in our understanding of the cellular and molecular aspects of biological aging have revealed a cellular senescence-centric view of the aging process. However, the association between gut microbiome and cellular senescence is only beginning to be understood. The present review provides an integrative view of the emerging relationship between the gut microbiome and cellular senescence in aging and disease. Evidence relating to microbiome-mediated modulation of senescent cells, as well as senescent cells-mediated changes in intestinal homeostasis have been discussed. Unanswered questions and future research directions have also been deliberated to truly ascertain the relationship of the gut microbiome and cellular senescence for developing microbiome-based age-delaying and longevity promoting therapies.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sarah L. Boddy ◽  
Ilaria Giovannelli ◽  
Matilde Sassani ◽  
Johnathan Cooper-Knock ◽  
Michael P. Snyder ◽  
...  

Abstract Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. Main body The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. Conclusion Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance.


2020 ◽  
pp. 107387 ◽  
Author(s):  
Corey C. Holt ◽  
David Bass ◽  
Grant D. Stentiford ◽  
Mark van der Giezen

2018 ◽  
Vol 85 (10) ◽  
Author(s):  
Alli Lynch ◽  
Seshu R. Tammireddy ◽  
Mary K. Doherty ◽  
Phillip D. Whitfield ◽  
David J. Clarke

ABSTRACTAcylated amino acids function as important components of the cellular membrane in some bacteria. Biosynthesis is initiated by theN-acylation of the amino acid, and this is followed by subsequentO-acylation of the acylated molecule, resulting in the production of the mature diacylated amino acid lipid. In this study, we use both genetics and liquid chromatography-mass spectrometry (LC-MS) to characterize the biosynthesis and function of a diacylated glycine lipid (GL) species produced inBacteroides thetaiotaomicron. We, and others, have previously reported the identification of a gene, namedglsBin this study, that encodes anN-acyltransferase activity responsible for the production of a monoacylated glycine calledN-acyl-3-hydroxy-palmitoyl glycine (or commendamide). In all of theBacteroidalesgenomes sequenced so far, theglsBgene is located immediately downstream from a gene, namedglsA, that is also predicted to encode a protein with acyltransferase activity. We use LC-MS to show that the coexpression ofglsBandglsAresults in the production of GL inEscherichia coli. We constructed a deletion mutant of theglsBgene inB. thetaiotaomicron, and we confirm thatglsBis required for the production of GL inB. thetaiotaomicron. Moreover, we show thatglsBis important for the ability ofB. thetaiotaomicronto adapt to stress and colonize the mammalian gut. Therefore, this report describes the genetic requirements for the biosynthesis of GL, a diacylated amino acid species that contributes to fitness in the human gut bacteriumB. thetaiotaomicron.IMPORTANCEThe gut microbiome has an important role in both health and disease of the host. The mammalian gut microbiome is often dominated by bacteria from theBacteroidales, an order that includesBacteroidesandPrevotella. In this study, we have identified an acylated amino acid, called glycine lipid, produced byBacteroides thetaiotaomicron, a beneficial bacterium originally isolated from the human gut. In addition to identifying the genes required for the production of glycine lipids, we show that glycine lipids have an important role during the adaptation ofB. thetaiotaomicronto a number of environmental stresses, including exposure to either bile or air. We also show that glycine lipids are important for the normal colonization of the murine gut byB. thetaiotaomicron. This work identifies glycine lipids as an important fitness determinant inB. thetaiotaomicronand therefore increases our understanding of the molecular mechanisms underpinning colonization of the mammalian gut by beneficial bacteria.


Gerontology ◽  
2018 ◽  
Vol 64 (6) ◽  
pp. 513-520 ◽  
Author(s):  
Sangkyu Kim ◽  
S. Michal Jazwinski

The gut microbiota shows a wide inter-individual variation, but its within-individual variation is relatively stable over time. A functional core microbiome, provided by abundant bacterial taxa, seems to be common to various human hosts regardless of their gender, geographic location, and age. With advancing chronological age, the gut microbiota becomes more diverse and variable. However, when measures of biological age are used with adjustment for chronological age, overall richness decreases, while a certain group of bacteria associated with frailty increases. This highlights the importance of considering biological or functional measures of aging. Studies using model organisms indicate that age-related gut dysbiosis may contribute to unhealthy aging and reduced longevity. The gut microbiome depends on the host nutrient signaling pathways for its beneficial effects on host health and lifespan, and gut dysbiosis disrupting the interdependence may diminish the beneficial effects or even have reverse effects. Gut dysbiosis can trigger the innate immune response and chronic low-grade inflammation, leading to many age-related degenerative pathologies and unhealthy aging. The gut microbiota communicates with the host through various biomolecules, nutrient signaling-independent pathways, and epigenetic mechanisms. Disturbance of these communications by age-related gut dysbiosis can affect the host health and lifespan. This may explain the impact of the gut microbiome on health and aging.


2011 ◽  
Vol 19 (7) ◽  
pp. 349-359 ◽  
Author(s):  
Elaine Holmes ◽  
Jia V. Li ◽  
Thanos Athanasiou ◽  
Hutan Ashrafian ◽  
Jeremy K. Nicholson

2019 ◽  
Vol 597 (9) ◽  
pp. 2361-2378 ◽  
Author(s):  
Vienna E. Brunt ◽  
Rachel A. Gioscia‐Ryan ◽  
James J. Richey ◽  
Melanie C. Zigler ◽  
Lauren M. Cuevas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document