scholarly journals The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS)

BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sarah L. Boddy ◽  
Ilaria Giovannelli ◽  
Matilde Sassani ◽  
Johnathan Cooper-Knock ◽  
Michael P. Snyder ◽  
...  

Abstract Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. Main body The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. Conclusion Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carmen N. Hernández-Candia ◽  
Sarah Pearce ◽  
Chandra L. Tucker

AbstractDynamic membraneless compartments formed by protein condensates have multifunctional roles in cellular biology. Tools that inducibly trigger condensate formation have been useful for exploring their cellular function, however, there are few tools that provide inducible control over condensate disruption. To address this need we developed DisCo (Disassembly of Condensates), which relies on the use of chemical dimerizers to inducibly recruit a ligand to the condensate-forming protein, triggering condensate dissociation. We demonstrate use of DisCo to disrupt condensates of FUS, associated with amyotrophic lateral sclerosis, and to prevent formation of polyglutamine-containing huntingtin condensates, associated with Huntington’s disease. In addition, we combined DisCo with a tool to induce condensates with light, CRY2olig, achieving bidirectional control of condensate formation and disassembly using orthogonal inputs of light and rapamycin. Our results demonstrate a method to manipulate condensate states that will have broad utility, enabling better understanding of the biological role of condensates in health and disease.


2020 ◽  
Vol 135 ◽  
pp. 104300 ◽  
Author(s):  
Christina N. Fournier ◽  
Madelyn Houser ◽  
Malú G. Tansey ◽  
Jonathan D. Glass ◽  
Vicki Stover Hertzberg

2019 ◽  
Vol 2 (1) ◽  

The present paper addresses anatomically resolved protein networks by using the Imaging Cycler Microscopy (ICM/TIS) [1,2]. ICM is capable of resolving protein networks in intact anatomical structures at a power of combinatorial molecular resolution of 65,553k , where k is the number of co-mapped proteins, e.g. 100 proteins [1-4]. This method provides insight into the laws of the spatial communication of large protein networks in health and disease, which is essential for new therapy options in diseases.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lu Chen ◽  
Yong Chen ◽  
Mingming Zhao ◽  
Lemin Zheng ◽  
Dongsheng Fan

Abstract To compare the plasma concentrations of trimethylamine N-oxide (TMAO) and its precursors in amyotrophic lateral sclerosis (ALS) patients, their spouses and healthy controls and to find associations between gut microbiota metabolites and ALS. ALS patients were recruited at Peking University Third Hospital from January 2015 to December 2018. Information was collected from their spouses at the same time. Age and gender matched healthy controls were recruited from individuals who visited the physical examination center for health checkups. Blood samples were collected after at least 4 h of fasting. Concentrations of the metabolites were quantified using stable isotope dilution liquid chromatography–tandem mass spectrometry. Group differences were analyzed using parametric and nonparametric tests, as appropriate. In this study, 160 patients with ALS were recruited. In these patients, 63 were compared with their spouses, 148 were compared with age and gender matched controls, and 60 were compared with both their spouses and heathy controls in the same time. The carnitine concentration was significantly higher in patients than in their spouses, while there were no significant differences in the concentrations of other metabolites. The carnitine and betaine concentrations were higher, while the choline, TMAO and butyrobetaine concentrations were lower in ALS than in healthy controls. The concentrations of the metabolites in the spouses were more similar to the ALS patients rather than to the healthy controls. In the ALS group, the plasma concentrations of carnitine, betaine, choline and TMAO were inversely related to the severity of upper motor neuron impairment. The TMAO metabolic pathway of the gut microbiota is disturbed in both ALS patients and their spouses, which might suggest that the changes in the gut microbiota occurred before disease onset. The negative correlations between the involvement of UMNs and the concentrations of the metabolites might suggest that the inhibition of this metabolic pathway might lead to a better prognosis in ALS patients.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2205 ◽  
Author(s):  
Jacco J.A.J. Bastings ◽  
Hans M. van Eijk ◽  
Steven W. Olde Damink ◽  
Sander S. Rensen

d-amino acids, the enantiomeric counterparts of l-amino acids, were long considered to be non-functional or not even present in living organisms. Nowadays, d-amino acids are acknowledged to play important roles in numerous physiological processes in the human body. The most commonly studied link between d-amino acids and human physiology concerns the contribution of d-serine and d-aspartate to neurotransmission. These d-amino acids and several others have also been implicated in regulating innate immunity and gut barrier function. Importantly, the presence of certain d-amino acids in the human body has been linked to several diseases including schizophrenia, amyotrophic lateral sclerosis, and age-related disorders such as cataract and atherosclerosis. Furthermore, increasing evidence supports a role for d-amino acids in the development, pathophysiology, and treatment of cancer. In this review, we aim to provide an overview of the various sources of d-amino acids, their metabolism, as well as their contribution to physiological processes and diseases in man, with a focus on cancer.


2018 ◽  
Vol 31 (03) ◽  
pp. 192-198 ◽  
Author(s):  
Grace Chen

AbstractThere is increasing evidence that the gut microbiome, which consists of trillions of microbes representing over 1,000 species of bacteria with over 3 million genes, significantly impacts intestinal health and disease. The gut microbiota not only is capable of promoting intestinal homeostasis and antitumor responses but can also contribute to chronic dysregulated inflammation as well as have genotoxic effects that lead to carcinogenesis. Whether the gut microbiota maintains health or promotes colon cancer may ultimately depend on the composition of the gut microbiome and the balance within the microbial community of protective and detrimental bacterial populations. Disturbances in the normal balanced state of a healthful microbiome, known as dysbiosis, have been observed in patients with colorectal cancer (CRC); however, whether these alterations precede and cause CRC remains to be determined. Nonetheless, studies in mice strongly suggest that the gut microbiota can modulate susceptibility to CRC, and therefore may serve as both biomarkers and therapeutic targets.


2014 ◽  
Vol 13 (4) ◽  
pp. 1019-1024 ◽  
Author(s):  
Jashelle Caga ◽  
Eleanor Ramsey ◽  
Anne Hogden ◽  
Eneida Mioshi ◽  
Matthew C. Kiernan

AbstractObjective:Recognizing depressive symptoms in patients with amyotrophic lateral sclerosis (ALS) remains problematic given the potential overlap with the normal psychological responses to a terminal illness. Understanding mental health and disease-related risk factors for depression is key to identifying psychological morbidity. The present study aimed to determine the prevalence of depressive symptoms in ALS and to explore mental health and disease-related risk factors for depression.Method:Structured medical and psychiatric history questionnaires and a validated depression scale (Depression, Anxiety, Stress Scale–21) were completed by 27 ALS patients (60% female; 59% limb onset; age 65.11 ± SE 2.21) prior to their initial review at a multidisciplinary clinic. Physical function was assessed with the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS–R).Results:At the time of initial assessment, 44% of patients had a previous psychiatric history, although the majority (62%) reported no symptoms of depression. The mean ALSFRS–R score was 37.78 ± SE 1.22, with an average diagnostic interval of 16.04 ± SE 2.39 months. Logistic regression analysis revealed that the length of the diagnostic interval alone predicted depressive symptoms (χ2(3, n = 26) = 9.21, Odds Ratio (OR) = 1.12, p < 0.05.Significance of Results:The illness experiences of ALS patients rather than established mental health risk factors influence the manifestation of depressive symptoms in the early stages of the disease, with clinical implications for the assessment and treatment of psychological morbidity. Patients with lengthy diagnostic intervals may be prime targets for psychological assessment and intervention, especially in the absence of ALS-specific tests and biomarkers.


Author(s):  
Katharine Nicholson ◽  
Kjetil Bjornevik ◽  
Galeb Abu-Ali ◽  
James Chan ◽  
Marianna Cortese ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document