scholarly journals Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuanyuan Mo ◽  
Feng Peng ◽  
Xiaofei Gao ◽  
Peng Xiao ◽  
Ramiro Logares ◽  
...  

Abstract Background Freshwater salinization may result in significant changes of microbial community composition and diversity, with implications for ecosystem processes and function. Earlier research has revealed the importance of large shifts in salinity on microbial physiology and ecology, whereas studies on the effects of smaller or narrower shifts in salinity on the microeukaryotic community in inland waters are scarce. Our aim was to unveil community assembly mechanisms and the stability of microeukaryotic plankton networks at low shifts in salinity. Results Here, we analyzed a high-resolution time series of plankton data from an urban reservoir in subtropical China over 13 consecutive months following one periodic salinity change ranging from 0 to 6.1‰. We found that (1) salinity increase altered the community composition and led to a significant decrease of plankton diversity, (2) salinity change influenced microeukaryotic plankton community assembly primarily by regulating the deterministic-stochastic balance, with deterministic processes becoming more important with increased salinity, and (3) core plankton subnetwork robustness was higher at low-salinity levels, while the satellite subnetworks had greater robustness at the medium-/high-salinity levels. Our results suggest that the influence of salinity, rather than successional time, is an important driving force for shaping microeukaryotic plankton community dynamics. Conclusions Our findings demonstrate that at low salinities, even small increases in salinity are sufficient to exert a selective pressure to reduce the microeukaryotic plankton diversity and alter community assembly mechanism and network stability. Our results provide new insights into plankton ecology of inland urban waters and the impacts of salinity change in the assembly of microbiotas and network architecture.

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 285 ◽  
Author(s):  
Mengxin Zhao ◽  
Jing Cong ◽  
Jingmin Cheng ◽  
Qi Qi ◽  
Yuyu Sheng ◽  
...  

Subtropical and tropical broadleaf forests play important roles in conserving biodiversity and regulating global carbon cycle. Nonetheless, knowledge about soil microbial diversity, community composition, turnover and microbial functional structure in sub- and tropical broadleaf forests is scarce. In this study, high-throughput sequencing was used to profile soil microbial community composition, and a micro-array GeoChip 5.0 was used to profile microbial functional gene distribution in four sub- and tropical broadleaf forests (HS, MES, HP and JFL) in southern China. The results showed that soil microbial community compositions differed dramatically among all of four forests. Soil microbial diversities in JFL were the lowest (5.81–5.99) and significantly different from those in the other three forests (6.22–6.39). Furthermore, microbial functional gene interactions were the most complex and closest, likely in reflection to stress associated with the lowest nitrogen and phosphorus contents in JFL. In support of the importance of environmental selection, we found selection (78–96%) dominated microbial community assembly, which was verified by partial Mantel tests showing significant correlations between soil phosphorus and nitrogen content and microbial community composition. Taken together, these results indicate that nitrogen and phosphorus are pivotal in shaping soil microbial communities in sub- and tropical broadleaf forests in southern China. Changes in soil nitrogen and phosphorus, in response to plant growth and decomposition, will therefore have significant changes in both microbial community assembly and interaction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Zhu ◽  
Xiang Sun ◽  
Qi-Yong Tang ◽  
Zhi-Dong Zhang

Endophytes are essential components of plant microbiota. Studies have shown that environmental factors and seasonal alternation can change the microbial community composition of plants. However, most studies have mainly emphasized the transitive endophyte communities and seasonal alternation but paid less attention to their persistence through multiple seasons. Kalidium schrenkianum is a perennial halophyte growing in an arid habitat with radiation stress (137Cs) in northwest China. In this study, K. schrenkianum growing under different environmental stresses were selected to investigate the dynamics and persistency of endophytic microbial communities amid seasons in a year. The results showed that Gammaproteobacteria and unassigned Actinobacteria were the most dominant bacterial communities, while the most dominant fungal communities were Dothideomycetes, unassigned Fungi, and Sodariomycetes. The bacterial community diversity in roots was higher than that in aerial tissues, and root communities had higher diversity in summer and autumn. In contrast, the fungal community diversity was higher in aerial tissues comparing to roots, and the highest diversity was in spring. Season was a determinant factor in the microbial community composition in the roots but not in the aerial tissues. RaupCrick index suggested that the bacterial communities were mainly shaped by stochastic processes. Our research investigated the community traits and members with temporal persistency. For example, bacterial taxa Afipia, Delftia, Stenotrophomonas, Xanthomonadaceae_B_OTU_211, and fungal taxa Neocamarosporium F_OTU_388, F_OTU_404, F_OTU_445, and unassigned Fungi F_OTU_704, F_OTU_767 showed higher frequencies than predicted in all the four seasons tested with neutral community model. The networks of co-occurrence associations presented in two or more seasons were visualized which suggested potential time-continuous core modules in most communities. In addition, the community dynamics and persistency also showed different patterns by radiation levels. Our findings would enhance our understanding of the microbial community assembly under environmental stress, and be promising to improve the development of integrated concept of core microbiome in future.


2019 ◽  
Vol 16 (159) ◽  
pp. 20190423 ◽  
Author(s):  
J. D. Brunner ◽  
N. Chia

Personalized models of the gut microbiome are valuable for disease prevention and treatment. For this, one requires a mathematical model that predicts microbial community composition and the emergent behaviour of microbial communities. We seek a modelling strategy that can capture emergent behaviour when built from sets of universal individual interactions. Our investigation reveals that species–metabolite interaction (SMI) modelling is better able to capture emergent behaviour in community composition dynamics than direct species–species modelling. Using publicly available data, we examine the ability of species–species models and species–metabolite models to predict trio growth experiments from the outcomes of pair growth experiments. We compare quadratic species–species interaction models and quadratic SMI models and conclude that only species–metabolite models have the necessary complexity to explain a wide variety of interdependent growth outcomes. We also show that general species–species interaction models cannot match the patterns observed in community growth dynamics, whereas species–metabolite models can. We conclude that species–metabolite modelling will be important in the development of accurate, clinically useful models of microbial communities.


2021 ◽  
Author(s):  
Rafet Cagri Ozturk ◽  
Ilhan Altinok ◽  
Ali Muzaffer Feyzioglu ◽  
Erol Capkin ◽  
Ilknur Yildiz

Abstract The Black Sea is a unique environment having a thin layer of oxic-zone above and anoxic-zone below. Seasonal, vertical, and horizontal microbial assemblages were studied in terms of diversity, abundance, community structure using NGS of the 16S rRNA gene. Total of 750 bacteria species from 23 different phyla were identified. The number of species richness increased from the surface to deeper zones. Although microbial community compositions between sampling stations were similar, microbial community compositions were significantly different vertically between zones. Community compositions of the seawater and sediment were also significantly different. Community composition at 5 meters in summer was significantly different from other seasons, while remaining depths appeared similar. Species of nitrite-oxidizing, sulfate-reducing, thiosulfate reducing, Iron-reducing, Fe-Mn reducing and electricity-producing bacteria were reported for the first time in the Black Sea. Proteobacteria dominated all the sampling depths. Proteobacteria, Cyanobacteria, Bacteroidetes, and Verrucomicrobia were present in the whole water column, while Nitrospinae, Chloroflexi, and Kiritimatiellaeota were restricted, appearing abundant at 75 meters and deeper layers. Vertical microbial community composition variation is attributable to environmental factors and their adaptations to the various ecological niches.


2020 ◽  
Vol 9 (1) ◽  
pp. 85-95
Author(s):  
Yumechris Amekan

An essential component in sustainable energy development is the production of bioenergy from waste. The most successful bioenergy technology worldwide is anaerobic digestion (AD), which is a microbially-mediated process of organic feedstock conversion into energy-rich compounds (volatile fatty acids (VFA) and biogas) for renewable energy generation. AD is deployed in a range of situations including systems for on-farm energy recovery from animal and plant waste to the processing of food and municipal solid waste (with the additional benefit of land-fill reduction).Anaerobic digesters rely on a diverse microbial community working syntrophycally through a series of interrelated biochemical processes.Each stage in anaerobic digestion is carried out by different microbial groups. Thus, to optimise energy recovery from the AD process, the microbial community must have stable performance over time, balancing the various metabolic functions and taxonomic community composition in digesters. Complicating this balance, it has been found that the presence of ammonia, sulphate, and hydrogen sulphide in substantial concentrations often cause failure in the AD process. Thus, these substances cause adverse shifts in microbial community composition and/or inhibit bacterial growth, that influencing AD performance.  ©2020. CBIORE-IJRED. All rights reserved


Sign in / Sign up

Export Citation Format

Share Document