scholarly journals The influence of microbial community dynamics on anaerobic digestion efficiency and stability: A Review

2020 ◽  
Vol 9 (1) ◽  
pp. 85-95
Author(s):  
Yumechris Amekan

An essential component in sustainable energy development is the production of bioenergy from waste. The most successful bioenergy technology worldwide is anaerobic digestion (AD), which is a microbially-mediated process of organic feedstock conversion into energy-rich compounds (volatile fatty acids (VFA) and biogas) for renewable energy generation. AD is deployed in a range of situations including systems for on-farm energy recovery from animal and plant waste to the processing of food and municipal solid waste (with the additional benefit of land-fill reduction).Anaerobic digesters rely on a diverse microbial community working syntrophycally through a series of interrelated biochemical processes.Each stage in anaerobic digestion is carried out by different microbial groups. Thus, to optimise energy recovery from the AD process, the microbial community must have stable performance over time, balancing the various metabolic functions and taxonomic community composition in digesters. Complicating this balance, it has been found that the presence of ammonia, sulphate, and hydrogen sulphide in substantial concentrations often cause failure in the AD process. Thus, these substances cause adverse shifts in microbial community composition and/or inhibit bacterial growth, that influencing AD performance.  ©2020. CBIORE-IJRED. All rights reserved

2021 ◽  
Author(s):  
Rafet Cagri Ozturk ◽  
Ilhan Altinok ◽  
Ali Muzaffer Feyzioglu ◽  
Erol Capkin ◽  
Ilknur Yildiz

Abstract The Black Sea is a unique environment having a thin layer of oxic-zone above and anoxic-zone below. Seasonal, vertical, and horizontal microbial assemblages were studied in terms of diversity, abundance, community structure using NGS of the 16S rRNA gene. Total of 750 bacteria species from 23 different phyla were identified. The number of species richness increased from the surface to deeper zones. Although microbial community compositions between sampling stations were similar, microbial community compositions were significantly different vertically between zones. Community compositions of the seawater and sediment were also significantly different. Community composition at 5 meters in summer was significantly different from other seasons, while remaining depths appeared similar. Species of nitrite-oxidizing, sulfate-reducing, thiosulfate reducing, Iron-reducing, Fe-Mn reducing and electricity-producing bacteria were reported for the first time in the Black Sea. Proteobacteria dominated all the sampling depths. Proteobacteria, Cyanobacteria, Bacteroidetes, and Verrucomicrobia were present in the whole water column, while Nitrospinae, Chloroflexi, and Kiritimatiellaeota were restricted, appearing abundant at 75 meters and deeper layers. Vertical microbial community composition variation is attributable to environmental factors and their adaptations to the various ecological niches.


2013 ◽  
Vol 47 (19) ◽  
pp. 7098-7108 ◽  
Author(s):  
Hasina M. Pervin ◽  
Paul G. Dennis ◽  
Hui J. Lim ◽  
Gene W. Tyson ◽  
Damien J. Batstone ◽  
...  

2018 ◽  
Vol 264 ◽  
pp. 290-297 ◽  
Author(s):  
Oscar Franchi ◽  
Patricia Bovio ◽  
Eduardo Ortega-Martínez ◽  
Francisca Rosenkranz ◽  
Rolando Chamy

2020 ◽  
Vol 11 ◽  
Author(s):  
Valentina Mazzurco Miritana ◽  
Giulia Massini ◽  
Andrea Visca ◽  
Paola Grenni ◽  
Luisa Patrolecco ◽  
...  

2014 ◽  
Vol 281 (1795) ◽  
pp. 20140882 ◽  
Author(s):  
James A. Bradley ◽  
Joy S. Singarayer ◽  
Alexandre M. Anesio

Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Zhu ◽  
Xiang Sun ◽  
Qi-Yong Tang ◽  
Zhi-Dong Zhang

Endophytes are essential components of plant microbiota. Studies have shown that environmental factors and seasonal alternation can change the microbial community composition of plants. However, most studies have mainly emphasized the transitive endophyte communities and seasonal alternation but paid less attention to their persistence through multiple seasons. Kalidium schrenkianum is a perennial halophyte growing in an arid habitat with radiation stress (137Cs) in northwest China. In this study, K. schrenkianum growing under different environmental stresses were selected to investigate the dynamics and persistency of endophytic microbial communities amid seasons in a year. The results showed that Gammaproteobacteria and unassigned Actinobacteria were the most dominant bacterial communities, while the most dominant fungal communities were Dothideomycetes, unassigned Fungi, and Sodariomycetes. The bacterial community diversity in roots was higher than that in aerial tissues, and root communities had higher diversity in summer and autumn. In contrast, the fungal community diversity was higher in aerial tissues comparing to roots, and the highest diversity was in spring. Season was a determinant factor in the microbial community composition in the roots but not in the aerial tissues. RaupCrick index suggested that the bacterial communities were mainly shaped by stochastic processes. Our research investigated the community traits and members with temporal persistency. For example, bacterial taxa Afipia, Delftia, Stenotrophomonas, Xanthomonadaceae_B_OTU_211, and fungal taxa Neocamarosporium F_OTU_388, F_OTU_404, F_OTU_445, and unassigned Fungi F_OTU_704, F_OTU_767 showed higher frequencies than predicted in all the four seasons tested with neutral community model. The networks of co-occurrence associations presented in two or more seasons were visualized which suggested potential time-continuous core modules in most communities. In addition, the community dynamics and persistency also showed different patterns by radiation levels. Our findings would enhance our understanding of the microbial community assembly under environmental stress, and be promising to improve the development of integrated concept of core microbiome in future.


Sign in / Sign up

Export Citation Format

Share Document