scholarly journals From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui Han ◽  
Bao Yi ◽  
Ruqing Zhong ◽  
Mengyu Wang ◽  
Shunfen Zhang ◽  
...  

AbstractFeelings of hunger and satiety are the key determinants for maintaining the life of humans and animals. Disturbed appetite control may disrupt the metabolic health of the host and cause various metabolic disorders. A variety of factors have been implicated in appetite control, including gut microbiota, which develop the intricate interactions to manipulate the metabolic requirements and hedonic feelings. Gut microbial metabolites and components act as appetite-related signaling molecules to regulate appetite-related hormone secretion and the immune system, or act directly on hypothalamic neurons. Herein, we summarize the effects of gut microbiota on host appetite and consider the potential molecular mechanisms. Furthermore, we propose that the manipulation of gut microbiota represents a clinical therapeutic potential for lessening the development and consequence of appetite-related disorders.

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 148
Author(s):  
Andre N. Pitaluga ◽  
Charalampos Filippou ◽  
Josephine Blakiston ◽  
Robert H.A. Coutts ◽  
George K. Christophides ◽  
...  

The cosmopolitan insect-pathogenic fungus and popular biocontrol agent Beauveria bassiana can be used to control Anopheles mosquito populations and restrict the spread of malaria, the deadliest vector-borne infectious disease in the world caused by the protozoan parasite Plasmodium. Here, we establish that infection with a double-stranded (ds)RNA mycovirus, Beauveria bassiana polymycovirus (BbPmV)-1, significantly reduces B. bassiana virulence against A. coluzzii, the main vector of malaria. The BbPmV-1-mediated hypovirulence can be at least partially attributed to slow fungal growth on the mosquitos. Analysis of the dual next-generation sequencing of the B. bassiana and A. coluzzii transcriptomes provided insight into the molecular mechanisms of the BbPmV-1-mediated effects. BbPmV-1-free B. bassiana has a wide impact on the A. coluzzii transcriptome, affecting immunity and metabolism, and led to the identification of novel immune response proteins. BbPmV-1 regulates the gene expression profile of its fungal host, directing the use of available resources towards sporulation and suppressing the mosquito immune system. Additionally, BbPmV-1-infected and -free B. bassiana strains differentially modulate mosquito gut microbiota; the former reduces the bacterial genus Elizabethkingia and the latter Serratia. Co-transfection of mosquitos with B. bassiana and P. berghei revealed a reduction of ookinetes in the presence of BbPmV-1, potentially due to the upregulation of a mycotoxin. Finally, BbPmV-1-mediated hypovirulence is at least partially dependent on the A. coluzzii RNAi pathway, and silencing of the dicer-2 gene restores virulence. Taken together, our data clearly demonstrate the crucial role of mycovirus infection in mediating B. bassiana virulence against A. coluzzii and suggest that BbPmV-1 protects A. coluzzii from B. bassiana, the mosquito’s own immune system, potentially harmful gut microbiota, and Plasmodium parasites.


2019 ◽  
Vol 123 (5) ◽  
pp. 637-654 ◽  
Author(s):  
Ran Guo ◽  
Li-Hua Chen ◽  
Chungen Xing ◽  
Tong Liu

2021 ◽  
Vol 22 (17) ◽  
pp. 9139
Author(s):  
Chang-Kee Hyun

Despite considerable epidemiological evidence indicating comorbidity between metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, as well as common pathophysiological features shared by these two categories of diseases, the relationship between their pathogenesis at molecular levels are not well described. Intestinal barrier dysfunction is a characteristic pathological feature of IBD, which also plays causal roles in the pathogenesis of chronic inflammatory metabolic disorders. Increased intestinal permeability is associated with a pro-inflammatory response of the intestinal immune system, possibly leading to the development of both diseases. In addition, dysregulated interactions between the gut microbiota and the host immunity have been found to contribute to immune-mediated disorders including the two diseases. In connection with disrupted gut microbial composition, alterations in gut microbiota-derived metabolites have also been shown to be closely related to the pathogeneses of both diseases. Focusing on these prominent pathophysiological features observed in both metabolic disorders and IBD, this review highlights and summarizes the molecular risk factors that may link between the pathogeneses of the two diseases, which is aimed at providing a comprehensive understanding of molecular mechanisms underlying their comorbidity.


2021 ◽  
Vol 28 ◽  
Author(s):  
Yuin Chang ◽  
Keng Yoon Yeong

: There have been intense research interests in sirtuins since the establishment of their regulatory roles in a myriad of pathological processes. In the last two decades, much research efforts have been dedicated to the development of sirtuin modulators. Although synthetic sirtuin modulators are the focus, natural modulators remain an integral part to be further explored in this area as they are found to possess therapeutic potential in various diseases including cancers, neurodegenerative diseases, and metabolic disorders. Owing to the importance of this cluster of compounds, this review gives a current stand on the naturally occurring sirtuin modulators, , associated molecular mechanisms and their therapeutic benefits.. Furthermore, comprehensive data mining resulted in detailed statistical data analyses pertaining to the development trend of sirtuin modulators from 2010-2020. Lastly, the challenges and future prospect of natural sirtuin modulators in drug discovery will also be discussed.


2019 ◽  
Vol 317 (4) ◽  
pp. E617-E630 ◽  
Author(s):  
Tomás Cerdó ◽  
Estefanía Diéguez ◽  
Cristina Campoy

Disturbances of diet during pregnancy and early postnatal life may impact colonization of gut microbiota during early life, which could influence infant health, leading to potential long-lasting consequences later in life. This is a nonsystematic review that explores the recent scientific literature to provide a general perspective of this broad topic. Several studies have shown that gut microbiota composition is related to changes in metabolism, energy balance, and immune system disturbances through interaction between microbiota metabolites and host receptors by the gut-brain axis. Moreover, recent clinical studies suggest that an intestinal dysbiosis in gut microbiota may result in cognitive disorders and behavioral problems. Furthermore, recent research in the field of brain imaging focused on the study of the relationship between gut microbial ecology and large-scale brain networks, which will help to decipher the influence of the microbiome on brain function and potentially will serve to identify multiple mediators of the gut-brain axis. Thus, knowledge about optimal nutrition by modulating gut microbiota-brain axis activity will allow a better understanding of the molecular mechanisms involved in the crosstalk between gut microbiota and the developing brain during critical windows. In addition, this knowledge will open new avenues for developing novel microbiota-modulating based diet interventions during pregnancy and early life to prevent metabolic disorders, as well as neurodevelopmental deficits and brain functional disorders.


2018 ◽  
Vol 19 (12) ◽  
pp. 3720 ◽  
Author(s):  
Kumar Ganesan ◽  
Sookja Kim Chung ◽  
Jairam Vanamala ◽  
Baojun Xu

The incidence of metabolic disorders, including diabetes, has elevated exponentially during the last decades and enhanced the risk of a variety of complications, such as diabetes and cardiovascular diseases. In the present review, we have highlighted the new insights on the complex relationships between diet-induced modulation of gut microbiota and metabolic disorders, including diabetes. Literature from various library databases and electronic searches (ScienceDirect, PubMed, and Google Scholar) were randomly collected. There exists a complex relationship between diet and gut microbiota, which alters the energy balance, health impacts, and autoimmunity, further causes inflammation and metabolic dysfunction, including diabetes. Faecalibacterium prausnitzii is a butyrate-producing bacterium, which plays a vital role in diabetes. Transplantation of F. prausnitzii has been used as an intervention strategy to treat dysbiosis of the gut’s microbial community that is linked to the inflammation, which precedes autoimmune disease and diabetes. The review focuses on literature that highlights the benefits of the microbiota especially, the abundant of F. prausnitzii in protecting the gut microbiota pattern and its therapeutic potential against inflammation and diabetes.


2019 ◽  
Vol 39 (4) ◽  
pp. 223-237 ◽  
Author(s):  
Muhammad Sajid Hamid Akash ◽  
Fareeha Fiayyaz ◽  
Kanwal Rehman ◽  
Shakila Sabir ◽  
Muhammad Hidayat Rasool

2019 ◽  
Vol 29 (6) ◽  
pp. 521-528
Author(s):  
Lingli Huang ◽  
Lingwei Huang ◽  
Ziwei Li ◽  
Qing Wei

2013 ◽  
Vol 16 (2) ◽  
pp. 231-239
Author(s):  
A. Ziolkowska ◽  
J. Mlynarczuk ◽  
J. Kotwica

Abstract Cortisol stimulates the synthesis and secretion of oxytocin (OT) from bovine granulosa and luteal cells, but the molecular mechanisms of cortisol action remain unknown. In this study, granulosa cells or luteal cells from days 1-5 and 11-15 of the oestrous cycle were incubated for 4 or 8 h with cortisol (1x10-5, 1x10-7 M). After testing cell viability and hormone secretion (OT, progesterone, estradiol), we studied the effect of cortisol on mRNA expression for precursor of OT (NP-I/OT) and peptidyl glycine-α-amidating mono-oxygenase (PGA). The influence of RU 486 (1x10-5 M), a progesterone receptor blocker and inhibitor of the glucocorticosteroid receptor (GR), on the expression for both genes was tested. Cortisol increased the mRNA expression for NP-I/OT and PGA in granulosa cells and stimulated the expression for NP-I/OT mRNA in luteal cells obtained from days 1-5 and days 11-15 of the oestrous cycle. Expression for PGA mRNA was increased only in luteal cells from days 11-15 of the oestrous cycle. In addition, RU 486 blocked the cortisol-stimulated mRNA expression for NP-I/OT and PGA in both types of cells. These data suggest that cortisol affects OT synthesis and secretion in bovine ovarian cells, by acting on the expression of key genes, that may impair ovary function.


Sign in / Sign up

Export Citation Format

Share Document