scholarly journals Correction to: Analysis of local habitat selection and large-scale attraction/avoidance based on animal tracking data: is there a single best method?

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Moritz Mercker ◽  
Philipp Schwemmer ◽  
Verena Peschko ◽  
Leonie Enners ◽  
Stefan Garthe
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Moritz Mercker ◽  
Philipp Schwemmer ◽  
Verena Peschko ◽  
Leonie Enners ◽  
Stefan Garthe

Abstract Background New wildlife telemetry and tracking technologies have become available in the last decade, leading to a large increase in the volume and resolution of animal tracking data. These technical developments have been accompanied by various statistical tools aimed at analysing the data obtained by these methods. Methods We used simulated habitat and tracking data to compare some of the different statistical methods frequently used to infer local resource selection and large-scale attraction/avoidance from tracking data. Notably, we compared spatial logistic regression models (SLRMs), spatio-temporal point process models (ST-PPMs), step selection models (SSMs), and integrated step selection models (iSSMs) and their interplay with habitat and animal movement properties in terms of statistical hypothesis testing. Results We demonstrated that only iSSMs and ST-PPMs showed nominal type I error rates in all studied cases, whereas SSMs may slightly and SLRMs may frequently and strongly exceed these levels. iSSMs appeared to have on average a more robust and higher statistical power than ST-PPMs. Conclusions Based on our results, we recommend the use of iSSMs to infer habitat selection or large-scale attraction/avoidance from animal tracking data. Further advantages over other approaches include short computation times, predictive capacity, and the possibility of deriving mechanistic movement models.


2020 ◽  
Author(s):  
Moritz Mercker ◽  
Philipp Schwemmer ◽  
Verena Peschko ◽  
Leonie Enners ◽  
Stefan Garthe

Abstract Background: New wildlife telemetry and tracking technologies have become available in the last decade, leading to a large increase in the volume and resolution of animal tracking data. These technical developments have been accompanied by various statistical tools aimed at analysing the data obtained by these methods. Methods: We used simulated habitat and tracking data to compare some of the different statistical methods frequently used to infer local resource selection and large-scale attraction/avoidance from tracking data. Notably, we compared the performances of spatial logistic regression models (SLRMs), point process models (PPMs), and integrated step selection models ((i)SSMs) and their interplays with habitat, tracking-device, and animal movement properties. Results: We demonstrated that SLRMs were inappropriate for large-scale attraction studies and prone to bias when inferring habitat selection. In contrast, PPMs and (i)SSMs showed comparable (unbiased) performances for both habitat selection and large-scale effect studies. However, (i)SSMs had several advantages over PPMs with respect to robustness, user-friendly implementation, and computation time. Conclusions: We recommend the use of (i)SSMs to infer habitat selection or large-scale attraction/avoidance from animal tracking data. This method has several practical advantages over PPMs and additionally extends SSMs, thus increasing its predictive capacity and allowing the derivation of mechanistic movement models.


2020 ◽  
Author(s):  
C. H. Fleming ◽  
J. Drescher-Lehman ◽  
M. J. Noonan ◽  
T. S. B. Akre ◽  
D. J. Brown ◽  
...  

AbstractAnimal tracking data are being collected more frequently, in greater detail, and on smaller taxa than ever before. These data hold the promise to increase the relevance of animal movement for understanding ecological processes, but this potential will only be fully realized if their accompanying location error is properly addressed. Historically, coarsely-sampled movement data have proved invaluable for understanding large scale processes (e.g., home range, habitat selection, etc.), but modern fine-scale data promise to unlock far more ecological information. While location error can often be ignored in coarsely sampled data, fine-scale data require much more care, and tools to do this have been lacking. Current approaches to dealing with location error largely fall into two categories—either discarding the least accurate location estimates prior to analysis or simultaneously fitting movement and error parameters in a hidden-state model. Unfortunately, both of these approaches have serious flaws. Here, we provide a general framework to account for location error in the analysis of animal tracking data, so that their potential can be unlocked. We apply our error-model-selection framework to 190 GPS, cellular, and acoustic devices representing 27 models from 14 manufacturers. Collectively, these devices are used to track a wide range of animal species comprising birds, fish, reptiles, and mammals of different sizes and with different behaviors, in urban, suburban, and wild settings. Then, using empirical data on tracked individuals from multiple species, we provide an overview of modern, error-informed movement analyses, including continuous-time path reconstruction, home-range distribution, home-range overlap, speed and distance estimation. Adding to these techniques, we introduce new error-informed estimators for outlier detection and autocorrelation visualization. We furthermore demonstrate how error-informed analyses on calibrated tracking data can be necessary to ensure that estimates are accurate and insensitive to location error, and allow researchers to use all of their data. Because error-induced biases depend on so many factors—sampling schedule, movement characteristics, tracking device, habitat, etc.—differential bias can easily confound biological inference and lead researchers to draw false conclusions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


2019 ◽  
Vol 34 (5) ◽  
pp. 459-473 ◽  
Author(s):  
Graeme C. Hays ◽  
Helen Bailey ◽  
Steven J. Bograd ◽  
W. Don Bowen ◽  
Claudio Campagna ◽  
...  

2020 ◽  
Vol 10 (23) ◽  
pp. 13044-13056
Author(s):  
Ruben Evens ◽  
Greg Conway ◽  
Kirsty Franklin ◽  
Ian Henderson ◽  
Jennifer Stockdale ◽  
...  

2005 ◽  
Vol 1 (3) ◽  
pp. 370-374 ◽  
Author(s):  
Christopher A Binckley ◽  
William J Resetarits

Distribution and abundance patterns at the community and metacommunity scale can result from two distinct mechanisms. Random dispersal followed by non-random, site-specific mortality (species sorting) is the dominant paradigm in community ecology, while habitat selection provides an alternative, largely unexplored, mechanism with different demographic consequences. Rather than differential mortality, habitat selection involves redistribution of individuals among habitat patches based on perceived rather than realized fitness, with perceptions driven by past selection. In particular, habitat preferences based on species composition can create distinct patterns of positive and negative covariance among species, generating more complex linkages among communities than with random dispersal models. In our experiments, the mere presence of predatory fishes, in the absence of any mortality, reduced abundance and species richness of aquatic beetles by up to 80% in comparison with the results from fishless controls. Beetle species' shared habitat preferences generated distinct patterns of species richness, species composition and total abundance, matching large-scale field patterns previously ascribed to random dispersal and differential mortality. Our results indicate that landscape-level patterns of distribution and species diversity can be driven to a large extent by habitat selection behaviour, a critical, but largely overlooked, mechanism of community and metacommunity assembly.


2016 ◽  
Vol 12 (11) ◽  
pp. 20160591 ◽  
Author(s):  
Kyle G. Horton ◽  
Benjamin M. Van Doren ◽  
Phillip M. Stepanian ◽  
Andrew Farnsworth ◽  
Jeffrey F. Kelly

The lower atmosphere (i.e. aerosphere) is critical habitat for migrant birds. This habitat is vast and little is known about the spatio-temporal patterns of distribution and abundance of migrants in it. Increased human encroachment into the aerosphere makes understanding where and when migratory birds use this airspace a key to reducing human–wildlife conflicts. We use weather surveillance radar to describe large-scale height distributions of nocturnally migrating birds and interpret these distributions as aggregate habitat selection behaviours of individual birds. As such, we detail wind cues that influence selection of flight heights. Using six radars in the eastern USA during the spring (2013–2015) and autumn (2013 and 2014), we found migrants tended to adjust their heights according to favourable wind profit. We found that migrants' flight altitudes correlated most closely with the altitude of maximum wind profit; however, absolute differences in flight heights and height of maximum wind profit were large. Migrants tended to fly slightly higher at inland sites compared with coastal sites during spring, but not during autumn. Migration activity was greater at coastal sites during autumn, but not during spring. This characterization of bird migration represents a critical advance in our understanding of migrant distributions in flight and a new window into habitat selection behaviours.


Sign in / Sign up

Export Citation Format

Share Document