scholarly journals Multivariate distributions of correlated binary variables generated by pair-copulas

Author(s):  
Huihui Lin ◽  
N. Rao Chaganty

AbstractCorrelated binary data are prevalent in a wide range of scientific disciplines, including healthcare and medicine. The generalized estimating equations (GEEs) and the multivariate probit (MP) model are two of the popular methods for analyzing such data. However, both methods have some significant drawbacks. The GEEs may not have an underlying likelihood and the MP model may fail to generate a multivariate binary distribution with specified marginals and bivariate correlations. In this paper, we study multivariate binary distributions that are based on D-vine pair-copula models as a superior alternative to these methods. We elucidate the construction of these binary distributions in two and three dimensions with numerical examples. For higher dimensions, we provide a method of constructing a multidimensional binary distribution with specified marginals and equicorrelated correlation matrix. We present a real-life data analysis to illustrate the application of our results.

Author(s):  
HYERAN BYUN ◽  
SEONG-WHAN LEE

In this paper, we present a survey on pattern recognition applications of Support Vector Machines (SVMs). Since SVMs show good generalization performance on many real-life data and the approach is properly motivated theoretically, it has been applied to wide range of applications. This paper describes a brief introduction of SVMs and summarizes its various pattern recognition applications.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 351
Author(s):  
Tom Marsik ◽  
Riley Bickford ◽  
Conor Dennehy ◽  
Robbin Garber-Slaght ◽  
Jeremy Kasper

The heat recovery efficiency of ventilation systems utilizing heat recovery ventilators (HRVs) depends not only on the heat recovery efficiency of the HRV units themselves but also on the intake and exhaust ducts that connect the HRV units to the outside environment. However, these ducts are often neglected in heat loss calculations, as their impact on the overall heat recovery efficiency of HRV systems is often not understood and, to the knowledge of the authors, a mathematical model for the overall heat recovery efficiency of HRV systems that accounts for these ducts has not been published. In this research, a mathematical model for the overall heat recovery efficiency of HRV systems that accounts for the intake and exhaust ducts was derived and validated using real-life data. The model-predicted decrease in heat recovery efficiency due to the ducts was in reasonable agreement (relative error within 20%) with the real-life measurements. The results suggest that utilizing this model allows for more correct ventilation heat loss calculations compared to using the heat recovery efficiency of the HRV unit alone, but more field studies are needed to verify the accuracy of this model in a wide range of applications.


Author(s):  
Fadimatu Bawuro Mohammed ◽  
Kabiru Ahmed Manju ◽  
Umar Kabir Abdullahi ◽  
Makama Musa Sani ◽  
Samson Kuje

The Rayleigh was obtained from the amplitude of sound resulting from many important sources by Rayleigh. It is continuous probability distribution with a wide range of applications such as in life testing experiments, reliability analysis, applied statistics and clinical studies. However, it is not flexible enough for modeling heavily skewed datasets as compared to compound distributions. In this paper, we introduce a new extension of the Rayleigh distribution by using a Gompertz-G family of distributions. This paper defines and studies a three-parameter distribution called “Gompertz-Rayleigh distribution”. Some properties of the proposed distribution are derived and discussed comprehensively in this paper and the three parameters are estimated using the method of maximum likelihood estimation. The goodness-of-fit of the proposed distribution is also evaluated by fitting it in comparison with some other existing distributions using a real life data.


2014 ◽  
Vol 25 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Martin Peper ◽  
Simone N. Loeffler

Current ambulatory technologies are highly relevant for neuropsychological assessment and treatment as they provide a gateway to real life data. Ambulatory assessment of cognitive complaints, skills and emotional states in natural contexts provides information that has a greater ecological validity than traditional assessment approaches. This issue presents an overview of current technological and methodological innovations, opportunities, problems and limitations of these methods designed for the context-sensitive measurement of cognitive, emotional and behavioral function. The usefulness of selected ambulatory approaches is demonstrated and their relevance for an ecologically valid neuropsychology is highlighted.


Author(s):  
Eleni Pantazi ◽  
Alexios Travlos ◽  
Evaggelia Vogiatzi ◽  
Ifigenia Kostoglou-Athanassiou

Sign in / Sign up

Export Citation Format

Share Document