scholarly journals Testing coverage criteria for optimized deep belief network with search and rescue

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kiran Jammalamadaka ◽  
Nikhat Parveen

AbstractA new data-driven programming model is defined by the deep learning (DL) that makes the internal structure of a created neuron system over a fixed of training data. DL testing structure only depends on the data labeling and manual group. Nowadays, a lot of coverage criteria have been developed, but these criteria basically count the neurons' quantity whose activation during the implementation of a DL structure fulfilled certain properties. Also, existing criteria are not adequately fine-grained to capture delicate behaviors. This paper develops an optimized deep belief network (DBN) with a search and rescue (SAR) algorithm for testing coverage criteria. For an optimal selection of DBN structure, the SAR algorithm is introduced. The main objective is to test the DL structure using different criteria to enhance the coverage accuracy. The different coverage criteria such as KMNC, NBC, SNAC, TKNC, and TKNP are used for the testing of DBN. Using the generated test inputs, the criteria is validated and the developed criteria are capable to capture undesired behaviors in the DBN structure. The developed approach is implemented by Python platform using three standard datasets like MNIST, CIFAR-10, and ImageNet. For analysis, the developed approach is compared with the three LeNet models like LeNet-1, LeNet-4 and LeNet-5 for the MNIST dataset, the VGG-16, and ResNet-20 models for the CIFAR-10 dataset, and the VGG-19 and ResNet-50 models for the ImageNet dataset. These models are tested on the four adversarial test input generation approaches like BIM, JSMA, FGSM, and CW, and one DL testing method like DeepGauge to validate the efficiency of the suggested approach. The simulation results proved that the proposed approach obtained high coverage accuracy for each criterion on four adversarial test inputs and one DL testing method as compared to other models.

2020 ◽  
Vol 8 (2) ◽  
pp. T309-T321
Author(s):  
Fan Peng ◽  
Suping Peng ◽  
Wenfeng Du ◽  
Hongshuan Liu

Accurate measurement of coalbed methane (CBM) content is the foundation for CBM resource exploration and development. Machine-learning techniques can help address CBM content prediction tasks. Due to the small amount of actual measurement data and the shallow model structure, however, the results from traditional machine-learning models have errors to some extent. We have developed a deep belief network (DBN)-based model with the input as continuous real values and the activation function as the rectified linear unit. We first calculated a variety of seismic attributes of the target coal seam to highlight the features of the coal seam, then we preprocessed the original attribute features, and finally developed the performance of the DBN model using the preprocessed features. We used 23,374 training data to train our model, 23,240 for pretraining, and 134 for fine-tuning. For the purpose of demonstrating the advantages of the DBN model, we compared it with two typical machine-learning models, including the multilayer perceptron model and the support vector regression model. These two models were trained based on the same labeled training data. The results, obtained from different models, indicated that the DBN model has the least error, which means that it is more accurate than the other two models when used to predict CBM content.


Author(s):  
Ira Zulfa ◽  
Edi Winarko

Sentiment analysis is a computational research of opinion sentiment and emotion which is expressed in textual mode. Twitter becomes the most popular communication device among internet users. Deep Learning is a new area of machine learning research. It aims to move machine learning closer to its main goal, artificial intelligence. The purpose of deep learning is to change the manual of engineering with learning. At its growth, deep learning has algorithms arrangement that focus on non-linear data representation. One of the machine learning methods is Deep Belief Network (DBN). Deep Belief Network (DBN), which is included in Deep Learning method, is a stack of several algorithms with some extraction features that optimally utilize all resources. This study has two points. First, it aims to classify positive, negative, and neutral sentiments towards the test data. Second, it determines the classification model accuracy by using Deep Belief Network method so it would be able to be applied into the tweet classification, to highlight the sentiment class of training data tweet in Bahasa Indonesia. Based on the experimental result, it can be concluded that the best method in managing tweet data is the DBN method with an accuracy of 93.31%, compared with  Naive Bayes method which has an accuracy of 79.10%, and SVM (Support Vector Machine) method with an accuracy of 92.18%.


2019 ◽  
Vol 28 (5) ◽  
pp. 925-932
Author(s):  
Hua WEI ◽  
Chun SHAN ◽  
Changzhen HU ◽  
Yu ZHANG ◽  
Xiao YU

Sign in / Sign up

Export Citation Format

Share Document