scholarly journals Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network

Author(s):  
Ira Zulfa ◽  
Edi Winarko

Sentiment analysis is a computational research of opinion sentiment and emotion which is expressed in textual mode. Twitter becomes the most popular communication device among internet users. Deep Learning is a new area of machine learning research. It aims to move machine learning closer to its main goal, artificial intelligence. The purpose of deep learning is to change the manual of engineering with learning. At its growth, deep learning has algorithms arrangement that focus on non-linear data representation. One of the machine learning methods is Deep Belief Network (DBN). Deep Belief Network (DBN), which is included in Deep Learning method, is a stack of several algorithms with some extraction features that optimally utilize all resources. This study has two points. First, it aims to classify positive, negative, and neutral sentiments towards the test data. Second, it determines the classification model accuracy by using Deep Belief Network method so it would be able to be applied into the tweet classification, to highlight the sentiment class of training data tweet in Bahasa Indonesia. Based on the experimental result, it can be concluded that the best method in managing tweet data is the DBN method with an accuracy of 93.31%, compared with  Naive Bayes method which has an accuracy of 79.10%, and SVM (Support Vector Machine) method with an accuracy of 92.18%.

2020 ◽  
Vol 8 (2) ◽  
pp. T309-T321
Author(s):  
Fan Peng ◽  
Suping Peng ◽  
Wenfeng Du ◽  
Hongshuan Liu

Accurate measurement of coalbed methane (CBM) content is the foundation for CBM resource exploration and development. Machine-learning techniques can help address CBM content prediction tasks. Due to the small amount of actual measurement data and the shallow model structure, however, the results from traditional machine-learning models have errors to some extent. We have developed a deep belief network (DBN)-based model with the input as continuous real values and the activation function as the rectified linear unit. We first calculated a variety of seismic attributes of the target coal seam to highlight the features of the coal seam, then we preprocessed the original attribute features, and finally developed the performance of the DBN model using the preprocessed features. We used 23,374 training data to train our model, 23,240 for pretraining, and 134 for fine-tuning. For the purpose of demonstrating the advantages of the DBN model, we compared it with two typical machine-learning models, including the multilayer perceptron model and the support vector regression model. These two models were trained based on the same labeled training data. The results, obtained from different models, indicated that the DBN model has the least error, which means that it is more accurate than the other two models when used to predict CBM content.


2020 ◽  
Vol 25 (3) ◽  
pp. 373-382
Author(s):  
He Yu ◽  
Zaike Tian ◽  
Hongru Li ◽  
Baohua Xu ◽  
Guoqing An

Residual Useful Life (RUL) prediction is a key step of Condition-Based Maintenance (CBM). Deep learning-based techniques have shown wonderful prospects on RUL prediction, although their performances depend on heavy structures and parameter tuning strategies of these deep-learning models. In this paper, we propose a novel Deep Belief Network (DBN) model constructed by improved conditional Restrict Boltzmann Machines (RBMs) and apply it in RUL prediction for hydraulic pumps. DBN is a deep probabilistic digraph neural network that consists of multiple layers of RBMs. Since RBM is an undirected graph model and there is no communication among the nodes of the same layer, the deep feature extraction capability of the original DBN model can hardly ensure the accuracy of modeling continuous data. To address this issue, the DBN model is improved by replacing RBM with the Improved Conditional RBM (ICRBM) that adds timing linkage factors and constraint variables among the nodes of the same layers on the basis of RBM. The proposed model is applied to RUL prediction of hydraulic pumps, and the results show that the prediction model proposed in this paper has higher prediction accuracy compared with traditional DBNs, BP networks, support vector machines and modified DBNs such as DEBN and GC-DBN.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 444 ◽  
Author(s):  
Alan F. Smeaton ◽  
. .

One of the mathematical cornerstones of modern data ana-lytics is machine learning whereby we automatically learn subtle patterns which may be hidden in training data, we associate those patterns with outcomes and we apply these patterns to new and unseen data and make predictions about as yet unseen outcomes. This form of data analytics al-lows us to bring value to the huge volumes of data that is collected from people, from the environment, from commerce, from online activities, from scienti c experiments, from many other sources. The mathematical basis for this form of machine learning has led to tools like Support Vector Machines which have shown moderate e ectiveness and good e ciency in their implementation. Recently, however, these have been usurped by the emergence of deep learning based on convolutional neural networks. In this presentation we will examine the basis for why such deep net-works are remarkably successful and accurate, their similarity to ways in which the human brain is organised, and the challenges of implementing such deep networks on conventional computer architectures.  


2018 ◽  
Vol 25 (2) ◽  
pp. 473-482 ◽  
Author(s):  
Fan Xu ◽  
Peter W. Tse

Unlike many traditional feature extraction methods of vibration signal such as ensemble empirical mode decomposition (EEMD), deep belief network (DBN) in deep learning can extract the useful information automatically and reduce the reliance on experts, with signal processing technology, and troubleshooting experience. In conventional fault diagnosis, data labels are required for classifiers such as support vector machine, random forest, and artificial neural networks. These are usually based on expert knowledge, for training and testing. But the process is usually tedious. The clustering model, on the other hand, can finish the roller bearings fault diagnosis without data labels, which is more efficient. There are some common clustering models which include fuzzy C-means (FCM), Gustafson–Kessel (GK), Gath–Geva (GG) models, and affinity propagation (AP). Unlike FCM, GK, and GG, which require knowledge or experience to pre-set the number of cluster center points, AP clustering algorithm can obtain the cluster center point according to the responsibility and availability calculations for all data points automatically. To the best of the authors’ knowledge, AP is rarely used for fault diagnosis. In this paper, a method which combines DBN, with several hidden layers, and AP for roller bearings fault diagnosis is proposed. For data visualization, the principal component analysis (PCA) is deployed to reduce the dimension of the extracted feature. The first two principal components are employed as the input of the FCM, GK, GG, and AP models for roller bearings faults diagnosis. Compared with other combination models such as EEMD–PCA–FCM/GK/GG and DBN–PCA–FCM/GK/GG, the proposed method, from the experimental results, is superior to the aforementioned combination models.


2021 ◽  
Vol 13 (7) ◽  
pp. 1401
Author(s):  
Genki Okada ◽  
Luis Moya ◽  
Erick Mas ◽  
Shunichi Koshimura

When flooding occurs, Synthetic Aperture Radar (SAR) imagery is often used to identify flood extent and the affected buildings for two reasons: (i) for early disaster response, such as rescue operations, and (ii) for flood risk analysis. Furthermore, the application of machine learning has been valuable for the identification of damaged buildings. However, the performance of machine learning depends on the number and quality of training data, which is scarce in the aftermath of a large scale disaster. To address this issue, we propose the use of fragmentary but reliable news media photographs at the time of a disaster and use them to detect the whole extent of the flooded buildings. As an experimental test, the flood occurred in the town of Mabi, Japan, in 2018 is used. Five hand-engineered features were extracted from SAR images acquired before and after the disaster. The training data were collected based on news photos. The date release of the photographs were considered to assess the potential role of news information as a source of training data. Then, a discriminant function was calibrated using the training data and the support vector machine method. We found that news information taken within 24 h of a disaster can classify flooded and nonflooded buildings with about 80% accuracy. The results were also compared with a standard unsupervised learning method and confirmed that training data generated from news media photographs improves the accuracy obtained from unsupervised classification methods. We also provide a discussion on the potential role of news media as a source of reliable information to be used as training data and other activities associated to early disaster response.


2019 ◽  
Vol 31 (3) ◽  
pp. 376-389 ◽  
Author(s):  
Congying Guan ◽  
Shengfeng Qin ◽  
Yang Long

Purpose The big challenge in apparel recommendation system research is not the exploration of machine learning technologies in fashion, but to really understand clothes, fashion and people, and know what to learn. The purpose of this paper is to explore an advanced apparel style learning and recommendation system that can recognise deep design-associated features of clothes and learn the connotative meanings conveyed by these features relating to style and the body so that it can make recommendations as a skilled human expert. Design/methodology/approach This study first proposes a type of new clothes style training data. Second, it designs three intelligent apparel-learning models based on newly proposed training data including ATTRIBUTE, MEANING and the raw image data, and compares the models’ performances in order to identify the best learning model. For deep learning, two models are introduced to train the prediction model, one is a convolutional neural network joint with the baseline classifier support vector machine and the other is with a newly proposed classifier later kernel fusion. Findings The results show that the most accurate model (with average prediction rate of 88.1 per cent) is the third model that is designed with two steps, one is to predict apparel ATTRIBUTEs through the apparel images, and the other is to further predict apparel MEANINGs based on predicted ATTRIBUTEs. The results indicate that adding the proposed ATTRIBUTE data that captures the deep features of clothes design does improve the model performances (e.g. from 73.5 per cent, Model B to 86 per cent, Model C), and the new concept of apparel recommendation based on style meanings is technically applicable. Originality/value The apparel data and the design of three training models are originally introduced in this study. The proposed methodology can evaluate the pros and cons of different clothes feature extraction approaches through either images or design attributes and balance different machine learning technologies between the latest CNN and traditional SVM.


2019 ◽  
Vol 13 (01) ◽  
pp. 67-86 ◽  
Author(s):  
Shin Kamada ◽  
Takumi Ichimura ◽  
Toshihide Harada

Deep learning has a hierarchical network structure to represent multiple features of input data. The adaptive structural learning method of Deep Belief Network (DBN) can reach the high classification capability while searching the optimal network structure during the training. The method can find the optimal number of hidden neurons for given input data in a Restricted Boltzmann Machine (RBM) by neuron generation–annihilation algorithm, and generate a new hidden layer in DBN by the extension of the algorithm. In this paper, the proposed adaptive structural learning of DBN (Adaptive DBN) was applied to the comprehensive medical examination data for cancer prediction. The developed prediction system showed higher classification accuracy for test data (99.5% for the lung cancer and 94.3% for the stomach cancer) than the several learning methods such as traditional RBM, DBN, Non-Linear Support Vector Machine (SVM), and Convolutional Neural Network (CNN). Moreover, the explicit knowledge that makes the inference process of the trained DBN is required in deep learning. The binary patterns of activated neurons for given input in RBM and the hierarchical structure of DBN can represent the relation between input and output signals. These binary patterns were classified by C4.5 for knowledge extraction. Although the extracted knowledge showed slightly lower classification accuracy than the trained DBN network, it was able to improve inference speed by about 1/40. We report that the extracted IF-THEN rules from the trained DBN for medical examination data showed some interesting features related to initial condition of cancer.


2021 ◽  
Vol 11 (11) ◽  
pp. 5228
Author(s):  
Waref Almanaseer ◽  
Mohammad Alshraideh ◽  
Omar Alkadi

Deep learning has emerged as a new area of machine learning research. It is an approach that can learn features and hierarchical representation purely from data and has been successfully applied to several fields such as images, sounds, text and motion. The techniques developed from deep learning research have already been impacting the research on Natural Language Processing (NLP). Arabic diacritics are vital components of Arabic text that remove ambiguity from words and reinforce the meaning of the text. In this paper, a Deep Belief Network (DBN) is used as a diacritizer for Arabic text. DBN is an algorithm among deep learning that has recently proved to be very effective for a variety of machine learning problems. We evaluate the use of DBNs as classifiers in automatic Arabic text diacritization. The DBN was trained to individually classify each input letter with the corresponding diacritized version. Experiments were conducted using two benchmark datasets, the LDC ATB3 and Tashkeela. Our best settings achieve a DER and WER of 2.21% and 6.73%, receptively, on the ATB3 benchmark with an improvement of 26% over the best published results. On the Tashkeela benchmark, our system continues to achieve high accuracy with a DER of 1.79% and 14% improvement.


2019 ◽  
Vol 8 (3) ◽  
pp. 8428-8432

Due to the rapid development of the communication technologies and global networking, lots of daily human life activities such as electronic banking, social networks, ecommerce, etc are transferred to the cyberspace. The anonymous, open and uncontrolled infrastructure of the internet enables an excellent platform for cyber attacks. Phishing is one of the cyber attacks in which attackers open some fraudulent websites similar to the popular and legal websites to steal the user’s sensitive information. Machine learning techniques such as J48, Support Vector Machine (SVM), Logistic Regression (LR), Naive Bayes (NB) and Artificial Neural Network (ANN) were widely to detect the phishing attacks. But, getting goodquality training data is one of the biggest problems in machine learning. So, a deep learning method called Deep Neural Network (DNN) is introduced to detect the phishing Uniform Resource Locators (URLs). Initially, a feature extractor is used to construct a 30-dimension feature vector based on URL-based features, HTML-based features and domain-based features. These features are given as input to the DNN classifier for phishing attack detection. It consists of one input layer, multiple hidden layers and one output layer. The multiple hidden layers in DNN try to learn high-level features in an incremental manner. Finally, the DNN returns a probability value which represent the phishing URLs and legitimate URLs. By using DNN the accuracy, precision and recall of phishing attack detection is improved.


Sign in / Sign up

Export Citation Format

Share Document