scholarly journals A sensitive HPLC-FLD method for the quantification of 6-O-demethylmenisporphine isolated from Menispermi Rhizoma in rat plasma

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinxia Wei ◽  
Jia Shao ◽  
Yanan Li ◽  
Yubo Li

Abstract Background To investigate the pharmacokinetics of 6-O-demethylmenisporphine, an oxoisoaporphine alkaloid with significant anti-tumor activities and isolated from Menispermi Rhizoma, a novel and sensitive HPLC assay was established for 6-O-demethylmenisporphine quantification in rat plasma. Methods Peak responses were detected by a highly selective and sensitive fluorescence detector with 426-nm excitation and 514-nm emission wavelengths. Curcumin was employed as the internal standard (IS). A Capcell Pak C18 column (150 mm × 4.6 mm i.d., 5 μm) and an isocratic elution procedure with a flow rate of 1.0 mL/min were used to exclude the endogenous interfering substance. Acetonitrile-water (68:32, v/v) containing 1% formic acid was employed as mobile phase. A 7-point calibration curve that covered the concentration range of 10–2500 ng/mL was constructed. Results A good linearity was observed with a correlation coefficient (r) of 0.9993. The lower limit of quantification for 6-O-demethylmenisporphine was 10 ng/mL. The mean recoveries of analyte in rat plasma exceeded 80.5%. The precision at four concentration levels was within 11.3% and the accuracy ranged from − 7.6 to 6.7%. Conclusion Using this new HPLC-FLD method, the investigation of plasma samples from rats following oral dosing of neat compound and Menispermi Rhizoma extract was successfully conducted. The results will provide a reference for the evaluation of preclinical safety of 6-O-demethylmenisporphine.

2018 ◽  
Vol 4 (1) ◽  
pp. 45-54
Author(s):  
Pal Murugan Muthaiah ◽  
Agathian Govindaswamy ◽  
Anil Dutt Semwal ◽  
Gopal Kumar Sharma

An investigation was carried out to determine acrylamide content in 51 popular snacks food of India by using High Pressure Liquid Chromatography (HPLC) Instrument with UV detection method. The method entails acetone extraction of acrylamide, clean up by solid extraction cartridges, isocratic elution with mobile phase of HPLC grade water, acetonitrile and formic acid followed by detection at 210 nm. The limit of detection and the limit of quantification for this method were 5.12 and 17.08 μg/kg, respectively. The mean recoveries of acrylamide obtained by using spiked samples ranged from 91 per cent to 101.33 per cent. Acrylamide concentrations in the five groups of snacks ranged from 788.99 - 4191.82 μg/ for extruded and deep fat fried snack, 372 to 6391μg/ kg for deep fat fried food, 435-3147μg/kg for baked food, 434-1307 μg/kg for breakfast cereal and 471-1520 μg/kg for other snacks. Among the food products, snack foods purchased from unorganised sector showed highest concentration of acrylamide.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yan-yun Yang ◽  
Liang Xu ◽  
Song-yao Hao ◽  
Yan Li ◽  
Zhen-Qiu Zhang

A sensitive HPLC method was developed for the quantitative determination of isoliquiritin apioside (ILA) and isoliquiritin (IL) in rat plasma. After protein precipitation with acetonitrile, chloroform was used to separate lipid-soluble impurities from the plasma samples and remove acetonitrile. A chromatography was carried out on Diamonsil C18 (150×4.6 mm; 5 μm) analytical column, using a mobile phase consisting of water (containing phosphoric acid 0.1%, v/v); acetonitrile (72 : 28, v/v) at a flow rate of 1.0 mL/min. The wavelength-switching technology was performed to determine ILA and IL at 360 nm and wogonoside (internal standard, IS) at 276 nm. The calibration curves of ILA and IL were fairly linear over the concentration ranges of 0.060–3.84 μg/mL (r=0.9954) and 0.075–4.80 μg/mL (r=0.9968), respectively. The average extract recoveries of ILA, IL, and IS were all over 80%. The precision and accuracy for all concentrations of quality controls and standards were within 15%. The lower limit of quantification (LLOQ) was 0.060 μg/mL for ILA and 0.075 μg/mL for IL. The method was used in pharmacokinetic study after an oral administration of Zhigancao extract to rats.


2020 ◽  
Vol 16 (7) ◽  
pp. 960-966
Author(s):  
Qinghua Weng ◽  
Yichuan Chen ◽  
Zuoquan Zhong ◽  
Qianqian Wang ◽  
Lianguo Chen ◽  
...  

Introduction: In this study, we used UPLC-MS/MS to detect shanzhiside methylester in rat plasma, and investigated its pharmacokinetics in rats. Materials and Methods: Diazepam was utilized as an internal standard (IS), and acetonitrile precipitation method was used to process the plasma samples. Chromatographic separation was achieved using a UPLC BEH C18 column using mobile phase of methanol-0.1 % formic acid with gradient elution. Electrospray ionization (ESI) tandem mass spectrometry in multiple reaction monitoring (MRM) mode with positive ionization was applied. Results: The results indicated that within the range of 5-4000 ng/mL, linearity of shanzhiside methylester in rat plasma was acceptable (r>0.995), and the lower limit of quantification (LLOQ) was 5 ng/mL. Intra-day and inter-day precision RSD of shanzhiside methylester in rat plasma were lower than 14%. Accuracy range was between 87.3 % and 109.1 %, and matrix effect was between 99.2% and 106.3%. Conclusion: The method was successfully applied in the pharmacokinetics of shanzhiside methylester in rats after intravenous administration.


2008 ◽  
Vol 3 ◽  
pp. ACI.S953 ◽  
Author(s):  
Bo Wei ◽  
Dong Liang ◽  
Theodore R. Bates

A simple, specific, sensitive, and rapid high performance liquid chromatography (HPLC) method for the determination of griseofulvin in small volumes of rat plasma was developed and validated using warfarin as an internal standard. Biological sample preparation involved simple extraction with acetonitrile, followed by dilution with aqueous mobile phase buffer (20 mM sodium dihydrogen phosphate, pH 3.5) to eliminate any chromatographic solvent effects. Griseofulvin and warfarin were baseline separated and quantitated on a C18 reversed phase column (4.6 x 150 mm, 3.5 µm), using a mobile phase composed of a 20 mM aqueous solution of sodium dihydrogen phosphate-acetonitrile (55:45, v/v, pH 3.5) delivered at a flow rate of 1.0 mL/min, and with fluorescence detection (λexcitation = 300 nm, λemission = 418 nm). The method was proven to be linear over a plasma griseofulvin concentration range of 10 to 2500 ng/mL with a mean correlation coefficient of 0.9996. The intra-day and inter-day accuracy (relative error) were in the range of 0.89% to 9.26% and 0.71% to 7.68%, respectively. The within-day precision (coefficient of variation) was less than 3.0% and the between-day precision was less than 7.5%. The mean recovery of griseofulvin from rat plasma was found to be 99.2%. The limit of detection (LOD) and the limit of quantification (LOQ) of griseofulvin were determined to be 1 ng/mL and 10 ng/mL, respectively. The developed method was successfully applied to quantitatively assess the pharmacokinetics of griseofulvin in rats following a single 50 mg/kg oral dose of the drug.


2020 ◽  
Vol 16 (4) ◽  
pp. 428-435
Author(s):  
Ahmed F.A. Youssef ◽  
Yousry M. Issa ◽  
Kareem M. Nabil

Background: Simeprevir is one of the recently discovered drugs for treating hepatitis C which is one of the major diseases across the globe. Objective: The present study involves the development of a new and unique High-Performance Liquid Chromatography (HPLC) method using fluorescence detection for the determination of simeprevir (SIM) in human plasma. Methods: Two methods of extractions were tested, protein precipitation using acetonitrile and liquidliquid extraction. A 25 mM dipotassium hydrogen orthophosphate (pH 7.0)/ACN (50/50; v/v), was used as mobile phase and C18 reversed phase column as the stationary phase. The chromatographic conditions were optimized and the concentration of simeprevir was determined by using the fluorescence detector. Cyclobenzaprine was used as an internal standard. Results: Recovery of the assay method based on protein precipitation was up to 100%. Intra-day and inter-day accuracies range from 92.30 to 107.80%, with Relative Standard Deviation (RSD) range 1.65-8.02%. The present method was successfully applied to a pharmacokinetic study where SIM was administered as a single dose of 150 mg SIM/capsule (Olysio®) to healthy individuals. Conclusion: This method exhibits high sensitivity with a low limit of quantification 10 ng mL-1, good selectivity using fluorescence detection, wide linear application range 10-3000 ng mL-1, good recovery and highly precise and validation results. The developed method can be applied in routine analysis for real samples.


2012 ◽  
Vol 11 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Maizbha Uddin Ahmed ◽  
Mohammad Safiqul Islam ◽  
Tasmin Ara Sultana ◽  
AGM Mostofa ◽  
Muhammad Shahdaat Bin Sayeed ◽  
...  

Azithromycin is an effective and well-known antimicrobial agent. In the present study, a simple, sensitive and specific LC/MS/MS method has been developed and validated for the quantification of Azithromycin in  human serum samples using Clarithromycin as internal standard. Azithromycin was extracted from biological matrix  by using solid phase extraction process. The chromatographic separation was performed on Luna C18 (3 ?, 2x150   mm) column with a mobile phase consisting of 35 mM ammonium acetate buffer (mobile phase-A) and acetonitrile  and methanol in ratio of 90:10 ( as mobile phase-B) at a flow rate of 0.25 mL/min. The method was validated over a  linear concentration range of 0.5?50.0 ng/mL and limit of quantification (LOQ) was 0.5 ng/mL with a coefficient of  correlation (r2) = 0.9998. The intra-day and inter-day precision expressed as relative standard deviation were 1.64% – 8.43% and 2.32% – 9.92%, respectively. The average recovery of azithromycin from serum was 98.11%. The method  was successfully applied to a pharmacokinetic study after oral administration of Azithromycin 200 mg/5 ml suspension in healthy Bangladeshi volunteers. DOI: http://dx.doi.org/10.3329/dujps.v11i1.12488 Dhaka Univ. J. Pharm. Sci. 11(1): 55-63, 2012 (June)


Author(s):  
Yonghui Shen ◽  
Deru Meng ◽  
Feifei Chen ◽  
Hui Jiang ◽  
Liming Hu ◽  
...  

AbstractSarecycline is a narrow-spectrum antibiotic for the treatment of acne, which is a chronic inflammatory disease of the hair follicle sebaceous glands. In the study, UPLC-MS/MS was used to establish a rapid and accurate analytical method. The sarecycline was determined with poziotinib as internal standard (IS) in rat plasma. An ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm) could performe chromatographic separation with the mobile phase (methanol: water of 0.1% formic acid) with gradient elution. The ions of target fragment were m/z 488.19→410.14 for sarecycline and m/z 492.06→354.55 for poziotinib, which could quantify the electrospray ionization of positive multiple reaction monitoring (MRM) mode. The linear calibration curve of the concentration range was 1–1,000 ng/mL for sarecycline with a lower limit of quantification (LLOQ) of 1 ng/mL. The mean recovery was between 82.46 and 95.85% for sarecycline and poziotinib in rat plasma. RSD for precision of inter-day and intra-day were between 3.24 and 13.36%, and the accuracy ranged from 105.26 to 109.75%. The developed and validated method was perfectly used in the pharmacokinetic study and bioavailability of sarecycline after intravenous and oral administration in rats.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3953 ◽  
Author(s):  
Zhao ◽  
Tan ◽  
Chen ◽  
Sun ◽  
Wang ◽  
...  

As a novel monoterpenoid indole alkaloid, gardneramine has been confirmed to possess excellent nervous depressive effects. However, there have been no reports about the measurement of gardneramine in vitro and in vivo. The motivation of this study was to establish and validate a specific, sensitive, and robust analytical method based on UHPLC-MS/MS for quantification of gardneramine in rat plasma and various tissues after intravenous administration. The analyte was extracted from plasma and tissue samples by protein precipitation with methanol using theophylline as an internal standard (I.S.). The analytes were separated on an Agilent ZORBAX Eclipse Plus C18 column using a gradient elution of acetonitrile and 0.1% formic acid in water at a flow rate of 0.3 mL/min. Gardneramine and I.S. were detected and quantified using positive electrospray ionization in multiple reaction monitoring (MRM) mode with transitions of m/z 413.1→217.9 for gardneramine and m/z 181.2→124.1 for I.S.. Perfect linearity range was 1–2000 ng/mL with a correlation coefficient (r2) of ≥0.990. The lower limit of quantification (LLOQ) of 1.0 ng/mL was adequate for application to different preclinical studies. The method was successfully applied for determination of gardneramine in bio-samples.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2039
Author(s):  
Na Yoon Kim ◽  
Yong-Chul Kim ◽  
Yoon Gyoon Kim

This study aimed to develop and validate a sensitive liquid chromatography-coupled tandem mass spectrometry method for the quantification of LDD-2614, an indirubin derivative and novel FLT3 inhibitor, in rat plasma. In addition, the developed analytical method was applied to observe the pharmacokinetic properties of LDD-2614. Chromatographic separation was achieved on a Luna omega C18 column using a mixture of water and acetonitrile, both containing 0.1% formic acid. Quantitation was performed using positive electrospray ionization in a multiple reaction monitoring (MRM) mode. The MRM transitions were optimized as m/z 426.2→113.1 for LDD-2614 and m/z 390.2→113.1 for LDD-2633 (internal standard), and the lower limit of quantification (LLOQ) for LDD-2614 was determined as 0.1 ng/mL. Including the LLOQ, the nine-point calibration curve was linear with a correlation coefficient greater than 0.9991. Inter- and intraday accuracies (RE) ranged from −3.19% to 8.72%, and the precision was within 9.02%. All validation results (accuracy, precision, matrix effect, recovery, stability, and dilution integrity) met the acceptance criteria of the U.S. Food and Drug Administration and the Korea Ministry of Food and Drug Safety guidelines. The proposed method was validated and demonstrated to be suitable for the quantification of LDD-2614 for pharmacokinetics studies.


2020 ◽  
Vol 11 (2) ◽  
pp. 2210-2220
Author(s):  
Namburi LA Amara babu ◽  
Kalyani Koganti ◽  
Babji Palakeeti ◽  
Koduri SV Srinivas ◽  
Koya Prabhakara Rao

A rapid, sensitive and selective bioanalytical method was developed and validated by Liquid Chromatography - Mass spectrometry (LC-MS/MS) for determination and comparison of Selexipag% assay in various biological materials. Selexipag wasextractedand compared its % assay after protein precipitation technique from various biological materials such as rat plasma, rabbit plasma, human plasma and urine. Ambrisentan was selected as internal standard. Selected analytical column Waters, X-Bridge C18 3.5µ (50 x 4.6 mm), mobile phase consists of Hexane sulfonic acid and Acetonitrile (80:20 v/v) at a flow rate of 1.0 mL /minin isocratic modeand Selexipag was determined by the +ve mode of electrospray ionization by using Mass detector. The method was developed to assess the lowerlimit of detection (LLOD)(0.5 ng/mL), lower limit of quantification(LLOQ) (5 ng/mL) concentrations and Linearity range of 1 ng/mL to 20 ng/mLconcentration with regression correlation coefficient 0.999 were observed for Selexipag in Rat plasma. The test samples at lower, medium and higher concentrationsof Selexipag shows precision (% CV was 0.8 to 1.11) and accuracy results (97.3 % to 100.6%) for inter-day and intra-day analysis at0.5, 5, 10, 15 ng/mL concentrationsof Selexipag. Appreciable recoveries for Selexipag were observed when extracted in Rat plasma compared with other biological materials. Stability of Selexipag exists in all conditions like wet extract, bench top, freeze-thaw and in instrument auto sampler as per FDA guidelines. This method indicates good results of accuracy, precision, linearity, recovery, stability and pharmacokinetic studies in rat plasma for clinical trials.


Sign in / Sign up

Export Citation Format

Share Document