scholarly journals Alteration and dehydration of subducting oceanic crust within subduction zones: implications for décollement step-down and plate-boundary seismogenesis

2017 ◽  
Vol 69 (1) ◽  
Author(s):  
Jun Kameda ◽  
Sayako Inoue ◽  
Wataru Tanikawa ◽  
Asuka Yamaguchi ◽  
Yohei Hamada ◽  
...  
2021 ◽  
Vol 292 ◽  
pp. 452-467
Author(s):  
Rachel Bezard ◽  
Simon Turner ◽  
Bruce Schaefer ◽  
Gene Yogodzinski ◽  
Kaj Hoernle

2019 ◽  
Vol 219 (Supplement_1) ◽  
pp. S2-S20 ◽  
Author(s):  
Satoshi Kaneshima

SUMMARY We investigate the global distribution of S-to-P scatterers in the shallow to mid-lower mantle beneath subduction zones, where deep seismicity extends down to the bottom of the upper mantle. By array processing broadband and short period waveform data obtained at seismic networks, we seek anomalous later phases in the P coda within about 15–150 s after direct P waves. The later phases usually arrive along off-great circle paths and significantly later than S-to-P conversion from the ‘660 km’ discontinuity, often show positive slowness anomalies relative to direct P, and do not show a conversion depth that is consistent among nearby events. They are thus adequately regarded as scattered waves, rather than conversion at a global horizontal discontinuity. The S-to-P scattered waves often show amplitudes comparable to ‘S660P’ waves, which indicates that a spatial change in elastic properties by several percent occurs at the scatterers as abruptly as the post-spinel transformation and should arise from compositional heterogeneity. We locate prominent S-to-P scatterers beneath Pacific subduction zones and beneath southern Spain. Nearly half of 137 S-to-P scatterers located in this study and previous studies by the authors are shallower than 1000 km, and the number of scatterers decreases with depth. Scatterers deeper than 1800 km are rare and mostly weak. We examine relations between the locations of the scatterers and recently subducted slabs inferred from seismic tomography. The scatterers of mid-mantle depths, deeper than about 1000 km, are located distant from tomographic slabs. On the other hand, the majority of shallower scatterers are located beneath the slabs rather than near their fastest portions, which would indicate that chemically heterogeneous materials are not extensively entrained within thickened and folded slabs when the slabs impinge on the lower mantle. We also find scatterers near the locations where basaltic rocks of recently subducted oceanic crust are expected to exist, which suggests that oceanic crust is not delaminating when slabs impinge on the lower mantle.


2019 ◽  
Vol 219 (1) ◽  
pp. 645-661 ◽  
Author(s):  
Hiroo Kanamori ◽  
Luis Rivera ◽  
Lingling Ye ◽  
Thorne Lay ◽  
Satoko Murotani ◽  
...  

SUMMARY We recently found the original Omori seismograms recorded at Hongo, Tokyo, of the 1922 Atacama, Chile, earthquake (MS = 8.3) in the historical seismogram archive of the Earthquake Research Institute (ERI) of the University of Tokyo. These recordings enable a quantitative investigation of long-period seismic radiation from the 1922 earthquake. We document and provide interpretation of these seismograms together with a few other seismograms from Mizusawa, Japan, Uppsala, Sweden, Strasbourg, France, Zi-ka-wei, China and De Bilt, Netherlands. The 1922 event is of significant historical interest concerning the cause of tsunami, discovery of G wave, and study of various seismic phase and first-motion data. Also, because of its spatial proximity to the 1943, 1995 and 2015 great earthquakes in Chile, the 1922 event provides useful information on similarity and variability of great earthquakes on a subduction-zone boundary. The 1922 source region, having previously ruptured in 1796 and 1819, is considered to have significant seismic hazard. The focus of this paper is to document the 1922 seismograms so that they can be used for further seismological studies on global subduction zones. Since the instrument constants of the Omori seismographs were only incompletely documented, we estimate them using the waveforms of the observed records, a calibration pulse recorded on the seismogram and the waveforms of better calibrated Uppsala Wiechert seismograms. Comparison of the Hongo Omori seismograms with those of the 1995 Antofagasta, Chile, earthquake (Mw = 8.0) and the 2015 Illapel, Chile, earthquake (Mw = 8.3) suggests that the 1922 event is similar to the 1995 and 2015 events in mechanism (i.e. on the plate boundary megathrust) and rupture characteristics (i.e. not a tsunami earthquake) with Mw = 8.6 ± 0.25. However, the initial fine scale rupture process varies significantly from event to event. The G1 and G2, and R1 and R2 of the 1922 event are comparable in amplitude, suggesting a bilateral rupture, which is uncommon for large megathrust earthquakes.


2020 ◽  
Author(s):  
Xiaoyu Guan ◽  
Yuanze Zhou ◽  
Takashi Furumura

<p>Fitting subduction zone guided waves with synthetics is an ideal choice for studying the velocity structure of the oceanic crust. After an earthquake occurs in subduction zones, seismic waves can be trapped in the low-velocity oceanic crust and propagated as guided waves. The arrival time and frequency characteristics of the guided waves can be used to image the velocity structure of the oceanic crust. The analysis and modeling based on guided wave observations provide a rare opportunity to understand the velocity structure of the oceanic crust and the variations in oceanic crustal materials during the subduction process.</p><p>High-frequency guided waves have been observed in the subduction zone of eastern Alaska. On several sections, observed seismograms recorded by seismic stations show low-frequency (<2Hz) onsets ahead of the main high-frequency (>2Hz) guided waves. Differences in the arrival times and dispersion characteristics of seismic phases are related to the velocity structure of the oceanic crust, and the characteristics of coda waves are related to the distribution of elongated scatters in the oceanic crust. Through fitting the observed broadband waveforms and synthetics modeled with the 2-D FDM (Finite Difference Method), we obtain the preferred oceanic crustal velocity models for several sections in the subduction zone of eastern Alaska. The preferred models can explain the seismic phase arrival times, dispersions, and coda characteristics in the observed waveforms. With the obtained P- and S- wave models of velocity structures on several sections, the material compositions they represent are deduced, and the variations of oceanic crustal materials during subducting can be understood. This provides new evidence for studying the details of the subduction process in the subduction zone of eastern Alaska.</p>


2020 ◽  
Author(s):  
Bernhard Steinberger ◽  
Douwe van Hinsbergen

<p>Identifying the geodynamic processes that trigger the formation of new subduction zones is key to understand what keeps the plate tectonic cycle going, and how plate tectonics once started. Here we discuss the possibility of plume-induced subduction initiation. Previously, our numerical modeling revealed that mantle upwelling and radial push induced by plume rise may trigger plate motion change, and plate divergence as much as 15-20 My prior to LIP eruption. Here we show that, depending on the geometry of plates, the distribution of cratonic keels and where the plume rises, it may also cause a plate rotation around a pole that is located close to the same plate boundary where the plume head impinges: If that occurs near one end of the plate boundary, an Euler pole of the rotation may form along that plate boundary, with extension on one side, and convergence on the other.  This concept is applied to the India-Africa plate boundary and the Morondova plume, which erupted around 90 Ma, but may have influenced plate motions as early as 105-110 Ma. If there is negligible friction, i.e. there is a pre-existing weak plate boundary, we estimate that the total amount of convergence generated in the northern part of the India-Africa plate boundary can exceed 100 km, which is widely thought to be sufficient to initiate forced, self-sustaining subduction. This may especially occur if the India continental craton acts like an “anchor” causing a comparatively southern location of the rotation pole of the India plate. Geology and paleomagnetism-based reconstructions of subduction initiation below ophiolites from Pakistan, through Oman, to the eastern Mediterranean reveal that E-W convergence around 105 Ma caused forced subduction initiation, and we tentatively postulate that this is triggered by Morondova plume head rise. Whether the timing of this convergence is appropriate to match observations on subduction initiation as early as 105 Ma depends on the timing of plume head arrival, which may predate eruption of the earliest volcanics. It also depends on whether a plume head already can exert substantial torque on the plate while it is still rising – for example, if the plate is coupled to the induced mantle flow by a thick craton.</p>


2020 ◽  
Author(s):  
Robert Allen ◽  
Benedikt Braszus ◽  
Saskia Goes ◽  
Andreas Rietbrock ◽  
Jenny Collier ◽  
...  

<p>The Caribbean plate has a complex tectonic history, which makes it  particularly challenging to establish the evolution of the subduction zones at its margins. Here we present a new teleseismic P-wave tomographic model under the Antillean arc that benefits from ocean-bottom seismometer data collected in our recent VoiLA (Volatile Recycling in the Lesser Antilles) project. We combine this imagery with a new plate reconstruction that we use to predict possible slab positions in the mantle today. We find that upper mantle anomalies below the eastern Caribbean correspond to a stack of material that was subducted at different trenches at different times, but ended up in a similar part of the mantle due to the large northwestward motion of the Americas. This stack comprises: in the mantle transition zone, slab fragments that were subducted between 70 and 55 Ma below the Cuban and Aves segments of the Greater Arc of the Caribbean; at 450-250 km depth, material subducted between 55 and 35 Ma below the older Lesser Antilles (including the Limestone Caribees and Virgin Islands);  and above 250 km, slab from subduction between 30 and 0 Ma below the present Lesser Antilles to Hispaniola Arc. Subdued high velocity anomalies in the slab above 200 km depth coincide with where the boundary between the equatorial Atlantic and proto-Caribbean subducted, rather than as previously proposed, with the North-South American plate boundary. The different phases of subduction can be linked to changes in the age, and hence buoyancy structure, of the subducting plate.</p>


Geology ◽  
2021 ◽  
Author(s):  
Adam D. McArthur ◽  
Daniel E. Tek

The type and volume of sediment entering subduction zones affects the style of plate-boundary deformation and thus sedimentary and tectonic cycles. Because submarine channels significantly increase the transport efficiency of turbidity currents, their presence or absence in subduction trenches is a primary control on trench fill. To date, comprehensive architectural characterization of trench-axial channels has not been possible, undermining efforts to identify the factors controlling their initiation and evolution. Here, we describe the evolution of the Hikurangi Channel, which traverses the Hikurangi Trench, offshore New Zealand. Analysis of two- and three-dimensional seismic data reveals that the channel was present only during the last ~3.5 m.y. of the ~27 m.y. of the trench’s existence; its inception and propagation resulted from increased sediment supply to the trench following amplified hinterland exhumation. To test if the controls on the evolution of the Hikurangi Channel are universal, multivariate statistical analysis of the geomorphology of subduction trenches globally is used to investigate the formative conditions of axial channels in modern trenches. Terrigenous sediment supply and thickness of sediment cover in a trench are the dominant controls; subsidiary factors such as trench length and rugosity also contribute to the conditions necessary for trench-axial channel development. Axial channels regulate sediment distribution in trenches, and this varies temporally and spatially as a channel propagates along a trench. The presence of a trench-axial channel affects plate-boundary mechanics and has implications for the style of subduction-margin deformation.


2021 ◽  
Author(s):  
A Wech ◽  
C Boese ◽  
Timothy Stern ◽  
John Townend

Tectonic tremor is characterized by persistent, low-frequency seismic energy seen at major plate boundaries. Although predominantly associated with subduction zones, tremor also occurs along the deep extension of the strike-slip San Andreas Fault. Here we present the first observations of tectonic tremor along New Zealand's Alpine Fault, a major transform boundary that is late in its earthquake cycle. We report tectonic tremor that occurred on the central section of the Alpine Fault on 12days between March 2009 and October 2011. Tremor hypocenters concentrate in the lower crust at the downdip projection of the Alpine Fault; coincide with a zone of high P-wave attenuation (low Q p) and bright seismic reflections; occur in the 25-45km depth range, below the seismogenic zone; and may define the deep plate boundary structure extending through the lower crust and into the upper mantle. We infer this tremor to represent slow slip on the deep extent of the Alpine Fault in a fluid-rich region marked by high attenuation and reflectivity. These observations provide the first indication of present-day displacement on the lower crustal portion of the Australia-Pacific transform plate boundary. © Copyright 2012 by the American Geophysical Union.


Geology ◽  
2020 ◽  
Author(s):  
Ingo Grevemeyer ◽  
Shuichi Kodaira ◽  
Gou Fujie ◽  
Narumi Takahashi

Subduction zones may develop submarine spreading centers that occur on the overriding plate behind the volcanic arc. In these back-arc settings, the subducting slab controls the pattern of mantle advection and may entrain hydrous melts from the volcanic arc or slab into the melting region of the spreading ridge. We recorded seismic data across the Western Mariana Ridge (WMR, northwestern Pacific Ocean), a remnant island arc with back-arc basins on either side. Its margins and both basins show distinctly different crustal structure. Crust to the west of the WMR, in the Parece Vela Basin, is 4–5 km thick, and the lower crust indicates seismic P-wave velocities of 6.5–6.8 km/s. To the east of the WMR, in the Mariana Trough Basin, the crust is ~7 km thick, and the lower crust supports seismic velocities of 7.2–7.4 km/s. This structural diversity is corroborated by seismic data from other back-arc basins, arguing that a chemically diverse and heterogeneous mantle, which may differ from a normal mid-ocean-ridge–type mantle source, controls the amount of melting in back-arc basins. Mantle heterogeneity might not be solely controlled by entrainment of hydrous melt, but also by cold or depleted mantle invading the back-arc while a subduction zone reconfigures. Crust formed in back-arc basins may therefore differ in thickness and velocity structure from normal oceanic crust.


Sign in / Sign up

Export Citation Format

Share Document