scholarly journals Forecasting yearly geomagnetic variation through sequential estimation of core flow and magnetic diffusion

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Maurits C. Metman ◽  
Ciarán D. Beggan ◽  
Philip W. Livermore ◽  
Jonathan E. Mound

Abstract Earth’s internal magnetic field is generated through motion of the electrically conductive iron-alloy fluid comprising its outer core. Temporal variability of this magnetic field, termed secular variation (SV), results from two processes: one is the interaction between core fluid motion and the magnetic field, the other is magnetic diffusion. As diffusion is widely thought to take place over relatively long, millennial time scales, it is common to disregard it when considering yearly to decadal field changes; in this frozen-flux approximation, core fluid motion may be inferred on the core–mantle boundary (CMB) using observations of SV at Earth’s surface. Such flow models have been used to forecast variation in the magnetic field. However, recent work suggests that diffusion may also contribute significantly to SV on short time scales provided that the radial length scale of the magnetic field structure within the core is sufficiently short. In this work, we introduce a hybrid method to forecast field evolution that considers a model based on both a steady flow and diffusion, in which we adopt a two-step process: first fitting the SV to a steady flow, and then fitting the residual by magnetic diffusion. We assess this approach by hindcasting the evolution for 2010–2015, based on fitting the models to CHAOS-6 using time windows prior to 2010. We find that including diffusion yields a reduction of up to 25% in the global hindcast error at Earth’s surface; at the CMB this error reduction can be in excess of 77%. We show that fitting the model over the shortest window that we consider, 2009–2010, yields the lowest hindcast error. Based on our hindcast tests, we present a candidate model for the SV over 2020–2025 for IGRF-13, fit over the time window 2018.3–2019.3. Our forecasts indicate that over the next decade the axial dipole will continue to decay, reversed-flux patches will increase in both area and intensity, and the north magnetic (dip) pole will continue to migrate towards Siberia.

2020 ◽  
Vol 499 (3) ◽  
pp. 4561-4569
Author(s):  
M E Gusakov ◽  
E M Kantor ◽  
D D Ofengeim

ABSTRACT The self-consistent approach to the magnetic field evolution in neutron star (NS) cores, developed recently, is generalized to the case of superfluid and superconducting NSs. Applying this approach to the cold matter of NS cores composed of neutrons, protons, electrons, and muons, we find that, similarly to the case of normal matter, an arbitrary configuration of the magnetic field may result in generation of macroscopic particle velocities, strongly exceeding their diffusive (relative) velocities. This effect substantially accelerates evolution of the magnetic field in the stellar core. An hierarchy of time-scales of such evolution at different stages of NS life is proposed and discussed. It is argued that the magnetic field in the core cannot be considered as frozen or vanishing and that its temporal evolution should affect the observational properties of NSs.


2014 ◽  
Vol 44 (4) ◽  
pp. 293-312 ◽  
Author(s):  
Tomáš Šoltis ◽  
Ján Šimkanin

Abstract We present an investigation of dynamo in a simultaneous dependence on the non-uniform stratification, electrical conductivity of the inner core and the Prandtl number. Computations are performed using the MAG dynamo code. In all the investigated cases, the generated magnetic fields are dipolar. Our results show that the dynamos, especially magnetic field structures, are independent in our investigated cases on the electrical conductivity of the inner core. This is in agreement with results obtained in previous analyses. The influence of non-uniform stratification is for our parameters weak, which is understandable because most of the shell is unstably stratified, and the stably stratified region is only a thin layer near the CMB. The teleconvection is not observed in our study. However, the influence of the Prandtl number is strong. The generated magnetic fields do not become weak in the polar regions because the magnetic field inside the tangent cylinder is always regenerated due to the weak magnetic diffusion.


2018 ◽  
Vol 620 ◽  
pp. A191 ◽  
Author(s):  
M. Benko ◽  
S. J. González Manrique ◽  
H. Balthasar ◽  
P. Gömöry ◽  
C. Kuckein ◽  
...  

Context. It has been empirically determined that the umbra-penumbra boundaries of stable sunspots are characterized by a constant value of the vertical magnetic field. Aims. We analyzed the evolution of the photospheric magnetic field properties of a decaying sunspot belonging to NOAA 11277 between August 28–September 3, 2011. The observations were acquired with the spectropolarimeter on-board of the Hinode satellite. We aim to prove the validity of the constant vertical magnetic-field boundary between the umbra and penumbra in decaying sunspots. Methods. A spectral-line inversion technique was used to infer the magnetic field vector from the full-Stokes profiles. In total, eight maps were inverted and the variation of the magnetic properties in time were quantified using linear or quadratic fits. Results. We find a linear decay of the umbral vertical magnetic field, magnetic flux, and area. The penumbra showed a linear increase of the vertical magnetic field and a sharp decay of the magnetic flux. In addition, the penumbral area quadratically decayed. The vertical component of the magnetic field is weaker on the umbra-penumbra boundary of the studied decaying sunspot compared to stable sunspots. Its value seem to be steadily decreasing during the decay phase. Moreover, at any time of the sunspot decay shown, the inner penumbra boundary does not match with a constant value of the vertical magnetic field, contrary to what is seen in stable sunspots. Conclusions. During the decaying phase of the studied sunspot, the umbra does not have a sufficiently strong vertical component of the magnetic field and is thus unstable and prone to be disintegrated by convection or magnetic diffusion. No constant value of the vertical magnetic field is found for the inner penumbral boundary.


2021 ◽  
Author(s):  
Jérémy Rekier ◽  
Santiago Triana ◽  
Véronique Dehant

<p>Magnetic fields inside planetary objects can influence their rotation. This is true, in particular, of terrestrial objects with a metallic liquid core and a self-sustained dynamo such as the Earth, Mercury, Ganymede, etc. and also, to a lesser extent, of objects that don’t have a dynamo but are embedded in the magnetic field of their parent body like Jupiter’s moon, Io.<br>In these objects, angular momentum is transfered through the electromagnetic torques at the Core-Mantle Boundary (CMB) [1]. In the Earth, these have the potential to produce a strong modulation in the length of day at the decadal and interannual timescales [2]. They also affect the periods and amplitudes of nutation [3] and polar motion [4]. <br>The intensity of these torques depends primarily on the value of the electric conductivity at the base of the mantle, a close study and detailed modelling of their role in planetary rotation can thus teach us a lot about the physical processes taking place near the CMB.</p><p>In the study of the Earth’s length of day variations, the interplay between rotation and the internal magnetic field arrises from the excitation of torsional oscillations inside the Earth’s core [5]. These oscillations are traditionally modelled based on a series of assumptions such as that of Quasi-Geostrophicity (QG) of the flow inside the core [6]. On the other hand, the effect of the magnetic field on nutations and polar motion is traditionally treated as an additional coupling at the CMB [1]. In such model, the core flow is assumed to have a uniform vorticity and its pattern is kept unaffected by the magnetic field. </p><p>In the present work, we follow a different approach based on the study of magneto-inertial waves. When coupled to gravity through the effect of density stratification, these waves are known to play a crucial role in the oscillations of stars known as magneto-gravito-inertial modes [7]. The same kind of coupling inside the Earth’s core gives rise to the so-called MAC waves which are directly and conceptually related to the aforementioned torsional oscillations [8]. </p><p>We present our preliminary results on the computation of magneto-inertial waves in a freely rotating planetary model with a partially conducting mantle. We show how these waves can alter the frequencies of the free rotational modes identified as the Free Core Nutation (FCN) and Chandler Wobble (CW). We analyse how these results compare to those based on the QG hypothesis and how these are modified when viscosity and density stratification are taken into account. </p><p>[1] Dehant, V. et al. Geodesy and Geodynamics 8, 389–395 (2017). doi:10.1016/j.geog.2017.04.005<br>[2] Holme, R. et al. Nature 499, 202–204 (2013). doi:10.1038/nature12282<br>[3] Dumberry, M. et al. Geophys. J. Int. 191, 530–544 (2012). doi:10.1111/j.1365-246X.2012.05625.x<br>[4] Kuang, W. et al. Geod. Geodyn. 10, 356–362 (2019). doi:10.1016/j.geog.2019.06.003<br>[5] Jault, D. et al. Nature 333, 353–356 (1988). doi:10.1038/333353a0<br>[6] Gerick, F. et al. Geophys. Res. Lett. (2020). doi:10.1029/2020gl090803<br>[7] Mathis, S. et al. EAS Publications Series 62 323-362 (2013). doi: 10.1051/eas/1362010<br>[8] Buffett, B. et al. Geophys. J. Int. 204, 1789–1800 (2016). doi:10.1093/gji/ggv552</p>


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 002111-002130 ◽  
Author(s):  
Bruce C Kim ◽  
Saikat Mondal

This paper describes the design of a Through Silicon Via based high density 3D inductors for Internet of Things (IoT) applications. We present some possible challenges for TSV-based inductors in IoT applications. The current trend towards Internet of Things (IOT), System in Package (SiP) and Package-on-Package (PoP) requires meeting the power requirements of heterogeneous technologies while maintaining minimum package size. 3-D chip stacking has emerged as one of the potential solutions due to its high density integration in a 3D power electronics packaging regime. As an integral part of many power electronics applications, TSV-based inductors are becoming a popular choice because of their high inductance density due to the reduced on-chip footprint compared to conventional planar inductors. Depending on the requirement, values of these inductors could range from a few nanohenries to hundreds of microhenries. Small inductors with a high quality factor are mainly used for RF filter applications, whereas large inductors are used in power electronics packaging. For high inductance it is necessary to use ferromagnetic materials. A conventional ferromagnetic metal core like nickel could offer high permeability, which can help to boost the inductance. However, the magnetic field lines within a metal core induce eddy current which can have multiple adverse effect in power electronics packaging. For example, it has long been known that the current can increase the resistance in transformer winding [1]. Eddy current can also heat up the core of the inductor which makes the heat sink process in 3D packaging even more challenging. One way to decrease the eddy current, is to pattern and laminate the core block into multiple segments orthogonal to the direction of the magnetic field line [2]. Another method is to increase the resistivity of the core material so that the eddy current is limited to a very small magnitude [3].


1972 ◽  
Vol 50 (8) ◽  
pp. 736-739 ◽  
Author(s):  
J. A. Cameron ◽  
L. Keszthelyi ◽  
G. Mezei ◽  
Z. Szökefalvi-Nagy ◽  
L. Varga

Larmor precession of the first 2+ states of 182W and 184W has been observed in an iron alloy containing 5 atom % W. The levels were Coulomb excited with 2.5 MeV protons. The hyperfine energy in 182W is the same as that found by Mössbauer absorption. The variation of the field up to 300 °K is less than 6%. A comparison of g factors measured by the hyperfine field and the external field suggests the existence of a hyperfine anomaly.


The magnetic field generated in the core of the Earth is often represented by spherical harmonics of the magnetic potential. It has been found from looking at the equations of spherical harmonics, and from studying the values of the spherical harmonic coefficients derived from data from Magsat, that this is an unsatisfactory way of representing the core field. Harmonics of high degree are characterized by generally shorter wavelength expressions on the surface of the Earth, but also contain very long wavelength features as well. Thus if it is thought that the higher degree harmonics are produced by magnetizations within the crust of the Earth, these magnetizations have to be capable of producing very long wavelength signals. Since it is impossible to produce very long wavelength signals of sufficient amplitude by using crustal magnetizations of reasonable intensity, the separation of core and crustal sources by using spherical harmonics is not ideal. We suggest that a better way is to use radial off-centre dipoles located within the core of the Earth. These have several advantages. Firstly, they can be thought of as modelling real physical current systems within the core of the Earth. Secondly, it can be shown that off-centred dipoles, if located deep within the core, are more effective at removing long wavelength signals of potential or field than can be achieved by using spherical harmonics. The disadvantage is that it is much more difficult to compute the positions and strengths of the off-centred dipole fields, and much less easy to manipulate their effects (such as upward and downward continuation). But we believe, along with Cox and Alldredge & Hurwitz, that the understanding that we might obtain of the Earth’s magnetic field by using physically reasonable models rather than mathematically convenient models is very important. We discuss some of the radial dipole models that have been proposed for the nondipole portion of the Earth’s field to arrive at a model that agrees with observations of secular variation and excursions.


Sign in / Sign up

Export Citation Format

Share Document