scholarly journals Properties of the inner penumbral boundary and temporal evolution of a decaying sunspot

2018 ◽  
Vol 620 ◽  
pp. A191 ◽  
Author(s):  
M. Benko ◽  
S. J. González Manrique ◽  
H. Balthasar ◽  
P. Gömöry ◽  
C. Kuckein ◽  
...  

Context. It has been empirically determined that the umbra-penumbra boundaries of stable sunspots are characterized by a constant value of the vertical magnetic field. Aims. We analyzed the evolution of the photospheric magnetic field properties of a decaying sunspot belonging to NOAA 11277 between August 28–September 3, 2011. The observations were acquired with the spectropolarimeter on-board of the Hinode satellite. We aim to prove the validity of the constant vertical magnetic-field boundary between the umbra and penumbra in decaying sunspots. Methods. A spectral-line inversion technique was used to infer the magnetic field vector from the full-Stokes profiles. In total, eight maps were inverted and the variation of the magnetic properties in time were quantified using linear or quadratic fits. Results. We find a linear decay of the umbral vertical magnetic field, magnetic flux, and area. The penumbra showed a linear increase of the vertical magnetic field and a sharp decay of the magnetic flux. In addition, the penumbral area quadratically decayed. The vertical component of the magnetic field is weaker on the umbra-penumbra boundary of the studied decaying sunspot compared to stable sunspots. Its value seem to be steadily decreasing during the decay phase. Moreover, at any time of the sunspot decay shown, the inner penumbra boundary does not match with a constant value of the vertical magnetic field, contrary to what is seen in stable sunspots. Conclusions. During the decaying phase of the studied sunspot, the umbra does not have a sufficiently strong vertical component of the magnetic field and is thus unstable and prone to be disintegrated by convection or magnetic diffusion. No constant value of the vertical magnetic field is found for the inner penumbral boundary.

2020 ◽  
Vol 642 ◽  
pp. A128
Author(s):  
A. L. Siu-Tapia ◽  
L. R. Bellot Rubio ◽  
D. Orozco Suárez ◽  
R. Gafeira

Context. Penumbral microjets (PMJs) is the name given to elongated jet-like brightenings observed in the chromosphere above sunspot penumbrae. They are transient events that last from a few seconds to several minutes, and their origin is presumed to be related to magnetic reconnection processes. Previous studies have mainly focused on their morphological and spectral characteristics, and more recently on their spectropolarimetric signals during the maximum brightness stage. Studies addressing the temporal evolution of PMJs have also been carried out, but they are based on spatial and spectral time variations only. Aims. Here we investigate, for the first time, the temporal evolution of the polarization signals produced by short-lived PMJs (lifetimes < 2 min) to infer how the magnetic field vector evolves in the upper photosphere and mid-chromosphere. Methods. We use fast-cadence spectropolarimetric observations of the Ca II 854.2 nm line taken with the CRisp Imaging Spectropolarimeter at the Swedish 1 m Solar Telescope. The weak-field approximation (WFA) is used to estimate the strength and inclination of the magnetic field vector. By separating the Ca II 854.2 nm line into two different wavelength domains to account for the chromospheric origin of the line core and the photospheric contribution to the wings, we infer the height variation of the magnetic field vector. Results. The WFA reveals larger magnetic field changes in the upper photosphere than in the chromosphere during the PMJ maximum brightness stage. In the photosphere, the magnetic field inclination and strength undergo a transient increase for most PMJs, but in 25% of the cases the field strength decreases during the brightening. In the chromosphere, the magnetic field tends to be slightly stronger during the PMJs. Conclusions. The propagation of compressive perturbation fronts followed by a rarefaction phase in the aftershock region may explain the observed behavior of the magnetic field vector. The fact that such behavior varies among the analyzed PMJs could be a consequence of the limited temporal resolution of the observations and the fast-evolving nature of the PMJs.


2020 ◽  
Vol 638 ◽  
pp. A25
Author(s):  
P. Lindner ◽  
R. Schlichenmaier ◽  
N. Bello González

Context. The vertical component of the magnetic field was found to reach a constant value at the boundary between penumbra and umbra of stable sunspots in a recent statistical study of Hinode/SP data. This finding has profound implications as it can serve as a criterion to distinguish between fundamentally different magneto-convective modes operating in the sun. Aims. The objective of this work is to verify the existence of a constant value for the vertical component of the magnetic field (B⊥) at the boundary between umbra and penumbra from ground-based data in the near-infrared wavelengths and to determine its value for the GREGOR Infrared Spectrograph (GRIS@GREGOR) data. This is the first statistical study on the Jurčák criterion with ground-based data, and we compare it with the results from space-based data (Hinode/SP and SDO/HMI). Methods. Eleven spectropolarimetric data sets from the GRIS@GREGOR slit-spectograph containing fully-fledged stable sunspots were selected from the GRIS archive. SIR inversions including a polarimetric straylight correction are used to produce maps of the magnetic field vector using the Fe I 15648 Å and 15662 Å lines. Averages of B⊥ along the contours between penumbra and umbra are analyzed for the 11 data sets. In addition, contours at the resulting B⊥const are drawn onto maps and compared to intensity contours. The geometric difference between these contours, ΔP, is calculated for each data set. Results. Averaged over the 11 sunspots, we find a value of B⊥const = (1787 ± 100) gauss. The difference from the values previously derived from Hinode/SP and SDO/HMI data is explained by instrumental differences and by the formation characteristics of the respective lines that were used. Contours at B⊥ = B⊥const and contours calculated in intensity maps match from a visual inspection and the geometric distance ΔP was found to be on the order of 2 pixels. Furthermore, the standard deviation between different data sets of averages along umbra–penumbra contours is smaller for B⊥ than for B∥ by a factor of 2.4. Conclusions. Our results provide further support to the Jurčák criterion with the existence of an invariable value B⊥const at the umbra–penumbra boundary. This fundamental property of sunspots can act as a constraining parameter in the calibration of analysis techniques that calculate magnetic fields. It also serves as a requirement for numerical simulations to be realistic. Furthermore, it is found that the geometric difference, ΔP, between intensity contours and contours at B⊥ = B⊥const acts as an index of stability for sunspots.


2013 ◽  
Vol 27 (30) ◽  
pp. 1350220 ◽  
Author(s):  
R. V. VOVK ◽  
A. V. SAMOILOV ◽  
I. L. GOULATIS ◽  
A. CHRONEOS

The dynamics of vortex matter in YBa 2 Cu 3 O 7-δ single crystal with unidirectional twin boundaries is studied experimentally in a wide range of velocities of the magnetic flux in a tilted magnetic field. It is determined that with the orientation of the magnetic field vector in the locality of the ab-plane, the dynamics of the magnetic flux near the melting temperature of the vortex lattice can be described by the Kim–Anderson model and as the temperature is lowered, by the theory of collective pinning on small-scale defects or by the vortex glass model. The intrinsic pinning caused by the layered crystal structure of the material has an impact on the dynamics of magnetic flux and this effect increases with the decreasing of the temperature.


2018 ◽  
Vol 611 ◽  
pp. L4 ◽  
Author(s):  
J. Jurčák ◽  
R. Rezaei ◽  
N. Bello González ◽  
R. Schlichenmaier ◽  
J. Vomlel

Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra–penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods. We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra–penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results. We statistically prove that the umbra–penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849–1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions. The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra–penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.


2020 ◽  
Vol 635 ◽  
pp. A64
Author(s):  
A. B. Griñón-Marín ◽  
A. Pastor Yabar ◽  
H. Socas-Navarro ◽  
R. Centeno

We analyse the temporal evolution of the inclination component of the magnetic field vector for the penumbral area of 25 isolated sunspots. Compared to previous works, the use of data from the HMI instrument aboard the SDO observatory facilitates the study of a very long time series (≈1 week) with a good spatial and temporal resolution. We used the wavelet technique and we found some filamentary-shaped events with large wavelet power. Their distribution of periods is broad, ranging from the lower limit for this study of 48 min up to 63 h. An interesting property of these events is that they do not appear homogeneously all around the penumbra but they seem to concentrate at particular locations. The cross-comparison of these wavelet maps with AIA data shows that the regions where these events appear are visually related to the coronal loops that connect the outer penumbra to one or more neighbouring opposite polarity flux patches.


2000 ◽  
Vol 64 (2) ◽  
pp. 195-200 ◽  
Author(s):  
ALEXANDER I. ERSHKOVICH ◽  
PETER L. ISRAELEVICH

The MHD analogue of the Brunt/Väisälä frequency, NB, in a magnetized, ideally conducting plasma is obtained, with the vertical component of the magnetic field, Br, taken into account. The magnetic field vector (Br, Bθ, Bϕ) is assumed to satisfy the condition B·∇B ≈ BrdB/dr, which holds in many cases of interest. The frequency NB happens to depend, generally speaking, on the magnetic field orientation relative to the direction of gravity. However, for an isentropic gas, the convective instability criterion is governed by the magnetic field strength (rather than by the orientation of B). In general, the magnetic field has a stabilizing (destabilizing) effect if B/ρ grows (decreases) along the vertical axis r. This conclusion seems not to depend on the specific magnetic field configuration.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust &amp; Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust &amp; Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


2012 ◽  
Vol 27 (40) ◽  
pp. 1250233 ◽  
Author(s):  
ROSY TEH ◽  
BAN-LOONG NG ◽  
KHAI-MING WONG

We present finite energy SU(2) Yang–Mills–Higgs particles of one-half topological charge. The magnetic fields of these solutions at spatial infinity correspond to the magnetic field of a positive one-half magnetic monopole at the origin and a semi-infinite Dirac string on one-half of the z-axis carrying a magnetic flux of [Formula: see text] going into the origin. Hence the net magnetic charge is zero. The gauge potentials are singular along one-half of the z-axis, elsewhere they are regular.


Author(s):  
Supriyo Paul ◽  
Krishna Kumar

Stability analysis of parametrically driven surface waves in liquid metals in the presence of a uniform vertical magnetic field is presented. Floquet analysis gives various subharmonic and harmonic instability zones. The magnetic field stabilizes the onset of parametrically excited surface waves. The minima of all the instability zones are raised by a different amount as the Chandrasekhar number is raised. The increase in the magnetic field leads to a series of bicritical points at a primary instability in thin layers of a liquid metal. The bicritical points involve one subharmonic and another harmonic solution of different wavenumbers. A tricritical point may also be triggered as a primary instability by tuning the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document