scholarly journals Interactions between rat alveolar epithelial cells and bone marrow-derived mesenchymal stem cells: an in vitro co-culture model

Author(s):  
Hiroyuki Ito ◽  
Tokujiro Uchida ◽  
Koshi Makita
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Eriko Fukui ◽  
Soichiro Funaki ◽  
Kenji Kimura ◽  
Toru Momozane ◽  
Atsuomi Kimura ◽  
...  

Chronic obstructive pulmonary disease is a leading cause of mortality globally, with no effective therapy yet established. Adipose tissue-derived stem cells (ADSCs) are useful for ameliorating lung injury in animal models. However, whether ADSCs differentiate into functional cells remains uncertain, and no study has reported on the mechanism by which ADSCs improve lung functionality. Thus, in this study, we examined whether ADSCs differentiate into lung alveolar cells and are able to ameliorate lung injury caused by elastase-induced emphysema in model mice. Here, we induced ADSCs to differentiate into type 2 alveolar epithelial cells in vitro. We demonstrated that ADSCs can differentiate into type 2 alveolar epithelial cells in an elastase-induced emphysematous lung and that ADSCs improve pulmonary function of emphysema model mice, as determined with spirometry and 129Xe MRI. These data revealed a novel function for ADSCs in promoting repair of the damaged lung by direct differentiation into alveolar epithelial cells.


2020 ◽  
Vol 1 (4) ◽  
pp. 155-162
Author(s):  
CF Hung

Abstract Purpose of Review In this brief review, we will highlight important observational and experimental data in the literature that address the origin of scar-forming cells in lung fibrosis. Recent Findings Several cellular sources of activated scar-forming cells (myofibroblasts) have been postulated including alveolar epithelial cells; circulating fibrocytes; and lung stromal cell subpopulations including resident fibroblasts, pericytes, and resident mesenchymal stem cells. Recent advances in lineage-tracing models, however, fail to provide experimental evidence for epithelial and fibrocyte origins of lung myofibroblasts. Resident mesenchymal cells of the lung, which include various cell types including resident fibroblasts, pericytes, and resident mesenchymal stem cells, appear to be important sources of myofibroblasts in murine models of lung injury and fibrosis. Summary Lung myofibroblasts likely originate from multiple sources of lung-resident mesenchymal cells. Their relative contributions may vary depending on the type of injury. Although lineage-tracing experiments have failed to show significant contribution from epithelial cells or fibrocytes, they may play important functional roles in myofibroblast activation through paracrine signaling.


2020 ◽  
Vol 15 (4) ◽  
pp. 332-339
Author(s):  
Wei Chen ◽  
Yi Zhuo ◽  
Da Duan ◽  
Ming Lu

Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis, adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research topic in recent years. Numerous studies have investigated the differentiation of MSCs into various types of cells in vitro and their application to numerous fields. However, most studies have cultured MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten times that to which MSCs would be exposed in the body. We therefore review the growing number of studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.


Sign in / Sign up

Export Citation Format

Share Document