scholarly journals Increased effort during partial ventilatory support is not associated with lung damage in experimental acute lung injury

Author(s):  
Dietrich Henzler ◽  
Alf Schmidt ◽  
Zhaolin Xu ◽  
Nada Ismaiel ◽  
Haibo Zhang ◽  
...  

Abstract Background An on-going debate exists as to whether partial ventilatory support is lung protective in an acute phase of ARDS. So far, the effects of different respiratory efforts on the development of ventilator-associated lung injury (VALI) have been poorly understood. To test the hypothesis whether respiratory effort itself promotes VALI, acute lung injury (ALI) was induced in 48 Sprague Dawley rats by hydrochloric acid aspiration model. Hemodynamics, gas-exchange, and respiratory mechanics were measured after 4 h of ventilation in pressure control (PC), assist-control (AC), or pressure support with 100% (PS100), 60% (PS60), or 20% (PS20) of the driving pressure during PC. VALI was assessed by histological analysis and biological markers. Results ALI was characterized by a decrease in PaO2/FiO2 from 447 ± 75 to 235 ± 90 mmHg (p < 0.001) and dynamic respiratory compliance from 0.53 ± 0.2 to 0.28 ± 0.1 ml/cmH2O (p < 0.001). There were no differences in hemodynamics or respiratory function among groups at baseline or after 4 h of ventilation. The reduction of mechanical pressure support was associated with a compensatory increase in an inspiratory effort such that peak inspiratory transpulmonary pressures were equal in all groups. The diffuse alveolar damage score showed significant lung injury but was similar among groups. Pro- and anti-inflammatory proteins in the bronchial fluid were comparable among groups. Conclusions In experimental ALI in rodents, the respiratory effort was increased by reducing the pressure support during partial ventilatory support. In the presence of a constant peak inspiratory transpulmonary pressure, an increased respiratory effort was not associated with worsening ventilator-associated lung injury measured by histologic score and biologic markers.

2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Laura Chimenti ◽  
Luis Morales-Quinteros ◽  
Ferranda Puig ◽  
Marta Camprubi-Rimblas ◽  
Raquel Guillamat-Prats ◽  
...  

Abstract Background The animal experimental counterpart of human acute respiratory distress syndrome (ARDS) is acute lung injury (ALI). Most models of ALI involve reproducing the clinical risk factors associated with human ARDS, such as sepsis or acid aspiration; however, none of these models fully replicates human ARDS. Aim To compare different experimental animal models of ALI, based on direct or indirect mechanisms of lung injury, to characterize a model which more closely could reproduce the acute phase of human ARDS. Materials and methods Adult male Sprague-Dawley rats were subjected to intratracheal instillations of (1) HCl to mimic aspiration of gastric contents; (2) lipopolysaccharide (LPS) to mimic bacterial infection; (3) HCl followed by LPS to mimic aspiration of gastric contents with bacterial superinfection; or (4) cecal ligation and puncture (CLP) to induce peritonitis and mimic sepsis. Rats were sacrificed 24 h after instillations or 24 h after CLP. Results At 24 h, rats instilled with LPS or HCl-LPS had increased lung permeability, alveolar neutrophilic recruitment and inflammatory markers (GRO/KC, TNF-α, MCP-1, IL-1β, IL-6). Rats receiving only HCl or subjected to CLP had no evidence of lung injury. Conclusions Rat models of ALI induced directly by LPS or HCl-LPS more closely reproduced the acute phase of human ARDS than the CLP model of indirectly induced ALI.


Author(s):  
Sanjay Mukhopadhyay ◽  
Mitra Mehrad ◽  
Pedro Dammert ◽  
Andrea V Arrossi ◽  
Rakesh Sarda ◽  
...  

Abstract Objectives The aim of this report is to describe the lung biopsy findings in vaping-associated pulmonary illness. Methods Lung biopsies from eight patients with vaping-associated pulmonary illness were reviewed. Results The biopsies were from eight men (aged 19-61 years) with respiratory symptoms following e-cigarette use (vaping). Workup for infection was negative in all cases, and there was no evidence for other etiologies. Imaging showed diffuse bilateral ground-glass opacities in all patients. Most recovered with corticosteroid therapy, while one died. Lung biopsies (seven transbronchial, one surgical) showed acute lung injury, including organizing pneumonia and/or diffuse alveolar damage. Common features were fibroblast plugs, hyaline membranes, fibrinous exudates, type 2 pneumocyte hyperplasia, and interstitial organization. Some cases featured a sparse interstitial chronic inflammatory infiltrate. Although macrophages were present within the airspaces in all cases, this feature was not prominent, and findings typical of exogenous lipoid pneumonia were absent. Conclusions The histopathology of acute pulmonary illness related to e-cigarette use (vaping) is characterized by acute lung injury patterns, supporting the contention that vaping can cause severe lung damage.


1998 ◽  
Vol 88 (5) ◽  
pp. 1300-1309 ◽  
Author(s):  
Kahoru Nishina ◽  
Katsuya Mikawa ◽  
Yumiko Takao ◽  
Makoto Shiga ◽  
Nobuhiro Maekawa ◽  
...  

Background Neutrophils play a crucial role in the pathogenesis of acid-induced acute lung injury. Lidocaine inhibits the function of neutrophils. This study aimed to determine whether lidocaine attenuates acute lung injury induced by hydrochloric acid (HCl) instillation. Methods In study 1, rabbits were divided into four groups (n = 7 each). Lung injury was induced by intratracheal HCl (0.1 N, 3 ml/kg) in two groups. The other two groups received saline intratracheally. Lidocaine given intravenously (2 mg/ g bolus + 2 mg x kg(-1) x h(-1) infusion) was started 10 min before intratracheal instillation in one HCl and one saline group, and saline was given intravenously in the other two groups. In study 2, rabbits (four groups of seven animals each) received HCl (0.1 N, 3 ml/kg) intratracheally. Treatment with intravenous lidocaine was started 10 min before, 10 min after, or 30 min after acid instillation, or saline was given intravenously 10 min before instillation. Results In study 1, HCl caused deterioration of the partial pressure of oxygen (PaO2), lung leukosequestration, decreased lung compliance, and increased the lung wet-to-dry weight ratio and albumin, interleukin-6 (IL-6), and IL-8 levels in bronchoalveolar lavage fluid. Lidocaine pretreatment attenuated these changes. Hydrochloric acid increased superoxide anion production by neutrophils and caused morphologic lung damage, both of which were lessened by lidocaine. In study 2, lidocaine given 10 min after acid instillation was as effective as pretreatment in PaO2, lung mechanics, and histologic examination. However, PaO2 changes in lidocaine 30 min after injury were similar to those in saline given intravenously. Conclusions Intravenous lidocaine started before and immediately after acid instillation attenuated the acute lung injury, in part by inhibiting the sequestration and activation of neutrophils.


2016 ◽  
Vol 311 (2) ◽  
pp. L229-L237 ◽  
Author(s):  
F. Puig ◽  
R. Herrero ◽  
R. Guillamat-Prats ◽  
M. N. Gómez ◽  
J. Tijero ◽  
...  

The majority of the animal models of acute lung injury (ALI) are focused on the acute phase. This limits the studies of the mechanisms involved in later phases and the effects of long-term treatments. Thus the goal of this study was to develop an experimental ALI model of aspiration pneumonia, in which diffuse alveolar damage continues for 72 h. Rats were intratracheally instilled with one dose of HCl (0.1 mol/l) followed by another instillation of one dose of LPS (0, 10, 20, 30, or 40 μg/g body weight) 2 h later, which models aspiration of gastric contents that progresses to secondary lung injury from bacteria or bacterial products. The rats were euthanized at 24, 48, and 72 h after the last instillation. The results showed that HCl and LPS at all doses caused activation of inflammatory responses, increased protein permeability and apoptosis, and induced mild hypoxemia in rat lungs at 24 h postinstillation. However, this lung damage was present at 72 h only in rats receiving HCl and LPS at the doses of 30 and 40 μg/g body wt. Mortality (∼50%) occurred in the first 48 h and only in the rats treated with HCl and LPS at the highest dose (40 μg/g body wt). In conclusion, intratracheal instillation of HCl followed by LPS at the dose of 30 μg/g body wt results in severe diffuse alveolar damage that continues at least 72 h. This rat model of aspiration pneumonia-induced ALI will be useful for testing long-term effects of new therapeutic strategies in ALI.


2019 ◽  
Vol 8 (8) ◽  
pp. 1250 ◽  
Author(s):  
Juliane Haase ◽  
Dorina C. Buchloh ◽  
Sören Hammermüller ◽  
Peter Salz ◽  
Julia Mrongowius ◽  
...  

Reducing ventilator-associated lung injury by individualized mechanical ventilation (MV) in patients with Acute Respiratory Distress Syndrome (ARDS) remains a matter of research. We randomly assigned 27 pigs with acid aspiration-induced ARDS to three different MV protocols for 24 h, targeting different magnitudes of collapse and tidal recruitment (collapse&TR): the ARDS-network (ARDSnet) group with low positive end-expiratory pressure (PEEP) protocol (permissive collapse&TR); the Open Lung Concept (OLC) group, PaO2/FiO2 >400 mmHg, indicating collapse&TR <10%; and the minimized collapse&TR monitored by Electrical Impedance Tomography (EIT) group, standard deviation of regional ventilation delay, SDRVD. We analyzed cardiorespiratory parameters, computed tomography (CT), EIT, and post-mortem histology. Mean PEEP over post-randomization measurements was significantly lower in the ARDSnet group at 6.8 ± 1.0 cmH2O compared to the EIT (21.1 ± 2.6 cmH2O) and OLC (18.7 ± 3.2 cmH2O) groups (general linear model (GLM) p < 0.001). Collapse&TR and SDRVD, averaged over all post-randomization measurements, were significantly lower in the EIT and OLC groups than in the ARDSnet group (collapse p < 0.001, TR p = 0.006, SDRVD p < 0.004). Global histological diffuse alveolar damage (DAD) scores in the ARDSnet group (10.1 ± 4.3) exceeded those in the EIT (8.4 ± 3.7) and OLC groups (6.3 ± 3.3) (p = 0.16). Sub-scores for edema and inflammation differed significantly (ANOVA p < 0.05). In a clinically realistic model of early ARDS with recruitable and nonrecruitable collapse, mechanical ventilation involving recruitment and high-PEEP reduced collapse&TR and resulted in improved hemodynamic and physiological conditions with a tendency to reduced histologic lung damage.


2012 ◽  
Vol 117 (6) ◽  
pp. 1322-1334 ◽  
Author(s):  
Aline M. Ambrosio ◽  
Rubin Luo ◽  
Denise T. Fantoni ◽  
Claudia Gutierres ◽  
Qin Lu ◽  
...  

Background In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.


2021 ◽  
Author(s):  
Irina N. Baranova ◽  
Alexander V. Bocharov ◽  
Tatyana G. Vishnyakova ◽  
Zhigang Chen ◽  
Anna A. Birukova ◽  
...  

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake, and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates understanding SR-BI’s role in endotoxemia/sepsis, calling for use of alternative models. In this study, using hSR-BI and hSR-BII transgenic mice, we found that SR-BI and to a lesser extent its splicing variant SR-BII, protects against LPS-induced lung damage. At 20 hours after intratracheal LPS instillation the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice compared to wild type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content as well as lung tissue neutrophil infiltration found in wild type mice was associated with markedly (2-3 times) increased pro-inflammatory cytokine production as compared to transgenic mice following LPS administration. Markedly lower endotoxin levels detected in BALF of transgenic vs. wild type mice along with the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 hours after the IT LPS injection suggest that hSR-BI and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


2018 ◽  
Vol 51 (6) ◽  
pp. 2776-2793 ◽  
Author(s):  
Yung-Fong Tsai ◽  
Shun-Chin Yang ◽  
Wen-Yi Chang ◽  
Jih-Jung Chen ◽  
Chun-Yu Chen ◽  
...  

Background/Aims: Formyl peptide receptors (FPRs) recognize different endogenous and exogenous molecular stimuli and mediate neutrophil activation. Dysregulation of excessive neutrophil activation and the resulting immune responses can induce acute lung injury (ALI) in the host. Accordingly, one promising approach to the treatment of neutrophil-dominated inflammatory diseases involves therapeutic FPR1 inhibition. Methods: We extracted a potent FPR1 antagonist from Garcinia multiflora Champ. (GMC). The inhibitory effects of GMC on superoxide anion release and elastase degranulation from activated human neutrophils were determined with spectrophotometric analysis. Reactive oxygen species (ROS) production and the FPR1 binding ability of neutrophils were assayed by flow cytometry. Signaling transduction mediated by GMC in response to chemoattractants was assessed with a calcium influx assay and western blotting. A lipopolysaccharide (LPS)-induced ALI mouse model was used to determine the therapeutic effects of GMC in vivo. Results: GMC significantly reduced superoxide anion release, the reactive oxidants derived therefrom, and elastase degranulation mediated through selective, competitive FPR1 blocking in N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF)-stimulated human neutrophils. In cell-free systems, GMC was unable to scavenge superoxide anions or suppress elastase activity. GMC produced a right shift in fMLF-activated concentration-response curves and was confirmed to be a competitive FPR1 antagonist. GMC binds to FPR1 not only in neutrophils, but also FPR1 in neutrophil-like THP-1 and hFPR1-transfected HEK293 cells. Furthermore, the mobilization of calcium and phosphorylation of mitogen-activated protein kinases and Akt, which are involved in FPR1-mediated downstream signaling, was competitively blocked by GMC. In an in vivo study, GMC significantly reduced pulmonary edema, neutrophil infiltration, and alveolar damage in LPS-induced ALI mice. Conclusion: Our findings demonstrate that GMC is a natural competitive FPR1 inhibitor, which makes it a possible anti-inflammatory treatment option for patients critically inflicted with FPR1-mediated neutrophilic lung damage.


Sign in / Sign up

Export Citation Format

Share Document