scholarly journals Solar evolution and extrema: current state of understanding of long-term solar variability and its planetary impacts

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dibyendu Nandy ◽  
Petrus C. H. Martens ◽  
Vladimir Obridko ◽  
Soumyaranjan Dash ◽  
Katya Georgieva

AbstractThe activity of stars such as the Sun varies over timescales ranging from the very short to the very long—stellar and planetary evolutionary timescales. Experience from our solar system indicates that short-term, transient events such as stellar flares and coronal mass ejections create hazardous space environmental conditions that impact Earth-orbiting satellites and planetary atmospheres. Extreme events such as stellar superflares may play a role in atmospheric mass loss and create conditions unsuitable for life. Slower, long-term evolutions of the activity of Sun-like stars over millennia to billions of years result in variations in stellar wind properties, radiation flux, cosmic ray flux, and frequency of magnetic storms. This coupled evolution of star-planet systems eventually determines planetary and exoplanetary habitability. The Solar Evolution and Extrema (SEE) initiative of the Variability of the Sun and Its Terrestrial Impact (VarSITI) program of the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) aimed to facilitate and build capacity in this interdisciplinary subject of broad interest in astronomy and astrophysics. In this review, we highlight progress in the major themes that were the focus of this interdisciplinary program, namely, reconstructing and understanding past solar activity including grand minima and maxima, facilitating physical dynamo-model-based predictions of future solar activity, understanding the evolution of solar activity over Earth’s history including the faint young Sun paradox, and exploring solar-stellar connections with the goal of illuminating the extreme range of activity that our parent star—the Sun—may have displayed in the past, or may be capable of unleashing in the future.

2020 ◽  
Vol 240 ◽  
pp. 07011
Author(s):  
Kushagra Shrivastava ◽  
Keith Wen Kai Chia ◽  
Kang Jun Wong ◽  
Alfred Yong Liang Tan ◽  
Hwee Tiang Ning

Solar activity research provides insight into the Sun’s past, future (Science Daily, 2018). The solar activity includes observations of large numbers of intense sunspots, flares, and other phenomena; and demands a wide range of techniques and measurements on the observations. This research needs long term data collection before critical analyses can occur, to generate meaningful learning and knowledge. In this project, we will use solar imaging to make observations of solar activity, and take our baby steps to make contributions in citizen science. Observations will be made in 3 wavelengths to gain a more thorough analysis by looking at different perspectives of the Sun, namely H-Alpha, Calcium-K, and white light.


2021 ◽  
Vol 44 ◽  
pp. 100-106
Author(s):  
A.K. Singh ◽  
◽  
A. Bhargawa ◽  

Solar-terrestrial environment is manifested primarily by the physical conditions of solar interior, solar atmosphere and eruptive solar plasma. Each parameter gives unique information about the Sun and its activity according to its defined characteristics. Hence the variability of solar parameters is of interest from the point of view of plasma dynamics on the Sun and in the interplanetary space as well as for the solar-terrestrial physics. In this study, we have analysed various solar transients and parameters to establish the recent trends of solar activity during solar cycles 21, 22, 23 and 24. The correlation coefficients of linear regression of F10.7 cm index, Lyman alpha index, Mg II index, cosmic ray intensity, number of M & X class flares and coronal mass ejections (CMEs) occurrence rate versus sunspot number was examined for last four solar cycles. A running cross-correlation method has been used to study the momentary relationship among the above mentioned solar activity parameters. Solar cycle 21 witnessed the highest value of correlation for F10.7 cm index, Lyman alpha index and number of M-class and X-class flares versus sunspot number among all the considered solar cycles which were 0.979, 0.935 and 0.964 respectively. Solar cycle 22 recorded the highest correlation in case of Mg II index, Ap index and CMEs occurrence rate versus sunspot number among all the considered solar cycles (0.964, 0.384 and 0.972 respectively). Solar cycle 23 and 24 did not witness any highest correlation compared to solar cycle 21 and 22. Further the record values (highest value compared to other solar three cycles) of each solar activity parameters for each of the four solar cycles have been studied. Here solar cycle 24 has no record text at all, this simply indicating that this cycle was a weakest cycle compared to the three previous ones. We have concluded that in every domain solar 24 was weaker to its three predecessors.


Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


1999 ◽  
Author(s):  
L. I. Dorman ◽  
G. Villoresi ◽  
I. V. Dorman ◽  
N. Iucci ◽  
M. Parisi

2020 ◽  
Vol 633 ◽  
pp. A83
Author(s):  
J. Becker Tjus ◽  
P. Desiati ◽  
N. Döpper ◽  
H. Fichtner ◽  
J. Kleimann ◽  
...  

The cosmic-ray Sun shadow, which is caused by high-energy charged cosmic rays being blocked and deflected by the Sun and its magnetic field, has been observed by various experiments, such as Argo-YBJ, Tibet, HAWC, and IceCube. Most notably, the shadow’s size and depth was recently shown to correlate with the 11-year solar cycle. The interpretation of such measurements, which help to bridge the gap between solar physics and high-energy particle astrophysics, requires a solid theoretical understanding of cosmic-ray propagation in the coronal magnetic field. It is the aim of this paper to establish theoretical predictions for the cosmic-ray Sun shadow in order to identify observables that can be used to study this link in more detail. To determine the cosmic-ray Sun shadow, we numerically compute trajectories of charged cosmic rays in the energy range of 5−316 TeV for five different mass numbers. We present and analyze the resulting shadow images for protons and iron, as well as for typically measured cosmic-ray compositions. We confirm the observationally established correlation between the magnitude of the shadowing effect and both the mean sunspot number and the polarity of the magnetic field during the solar cycle. We also show that during low solar activity, the Sun’s shadow behaves similarly to that of a dipole, for which we find a non-monotonous dependence on energy. In particular, the shadow can become significantly more pronounced than the geometrical disk expected for a totally unmagnetized Sun. For times of high solar activity, we instead predict the shadow to depend monotonously on energy and to be generally weaker than the geometrical shadow for all tested energies. These effects should become visible in energy-resolved measurements of the Sun shadow, and may in the future become an independent measure for the level of disorder in the solar magnetic field.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 133-158 ◽  
Author(s):  
Giuliana Castagnoli ◽  
Devendra Lal

This paper is concerned with the expected deviations in the production rate of natural 14C on the earth due to changes in solar activity. We review the published estimates of the global production rates of 14C due to galactic and solar cosmic ray particles, and present new estimates of the expected secular variations in 14C production, taking into account the latest information available on galactic cosmic ray modulation and long-term variations in solar activity.


Solar Physics ◽  
1970 ◽  
Vol 11 (1) ◽  
pp. 151-154 ◽  
Author(s):  
V. K. Balasubrahmanyan ◽  
D. Venkatesan

2019 ◽  
Vol 31 ◽  
pp. 61-70
Author(s):  
Alexey Stoev ◽  
Penka Stoeva

During the analysis of solar activity impact on climate, the emphasis is placed on temperature changes. Earth's atmosphere is a dynamical system with a complex variability in space and time. Due to the fact that caves in Karst preserve the long term environmental changes, the investigation of the in-caves’ atmospheric parameters and their variations with time becomes very important in the last quarter of century. In this paper we investigate the temporal evolution of the temperature and pressure of the ground atmospheric layer in the region of two Bulgarian caves: Snezhanka (Pazardjik region) and Uhlovitsa (Smolyan region), during the period 2005–2017. We show that thermal and mass exchange of the caves’ air with the environment has significant temporal variations. On annual basis the thermo-dynamical parameters of the observed caves behaves as a barotropic fluid, in which the air density depends only on atmospheric pressure. As a result, the temporal evolution of in-caves’ pressure and temperature change synchronously with time. The observed 11-year signal could be attributed to the heliospheric modulation of galactic cosmic ray (GCR) intensity, which modulates the ozone and humidity near the tropopause and correspondingly the strength of the atmospheric greenhouse effect. Our study helps to clarify the influence of helio-geophysical factors on the state of the lower atmosphere.


1988 ◽  
Vol 98 ◽  
pp. 177-180
Author(s):  
Klaus Reinsch

Professional solar astronomy concentrates on the study of the atmosphere and interior of the Sun. Little attention is given to “classical” programmes, mainly statistical investigations of solar activity. Although the main properties of phenomena associated with the solar cycle seem to be understood there are still enough details to be explained, making it worthwhile monitoring different indicators of solar activity, even if no immediate results are to be expected. Such routine observations are ideal work of amateur astronomers.Members of West German local astronomical societies founded the journal Sonne in 1977 to combine their efforts on solar observations. The first issue was presented at a conference on amateur solar observation held in Berlin in April 1977. Sonne is compiled by an editorial staff of 23 amateurs from all over West Germany, and is distributed among nearly 500 readers in 20 countries. With the increasing number of foreign readers, the main articles in Sonne are provided with English abstracts.


Sign in / Sign up

Export Citation Format

Share Document