scholarly journals Seismic analysis of soil nail performance in deep excavation

Author(s):  
Md. Khaja Moniuddin ◽  
P. Manjularani ◽  
L. Govindaraju
2014 ◽  
Vol 580-583 ◽  
pp. 83-88 ◽  
Author(s):  
Jie Zhao ◽  
Ling Li Wang

Under the condition of plane strain, a 2D elastoplastic FEM is used to analyze the behavior of composite soil nailing bracing of deep excavation, then finite element method of stability analysis is applied to evaluate the stability of the soil-nail wall. The authors analyzed the difference between composite soil nailing and normal soil nailing. Through analyzing the effect of bracing parameters on the deformation behavior and stability of the excavation, some useful conclusions are obtained to provide certain references for the design and construction of composite soil nailing.


2012 ◽  
Vol 204-208 ◽  
pp. 2671-2676 ◽  
Author(s):  
Siavash Zamiran ◽  
Hadi Ghojavand ◽  
Hamidreza Saba

Typically, temporary soil nailing systems are not required to provide for design level earthquake occurrences consistent with the building or structure being constructed inside the excavation. However, the seismic response of the permanent soil nail walls during the earthquakes should be evaluated. On the other hand, evaluation of 3D response of soil nailing walls have some strange manners that should be considered in the numerical analysis. In this paper, numerical simulations of soil nail walls under vibrational input have been carried out, and the results are compared with the function of soil nail walls under ordinary statistical loading. The behaviour of geometry of nails are mentioned under static and seismic analysis. After that some investigations are carried out to find respond of soil nailing walls in some 3D excavation forms. The analysis is performed with finite difference software called FLAC3D. The results are prepared as lateral displacement of the walls and normalized maximum tensile forces for nails. These results can demonstrate the behavior of external and internal resistance of soil nail walls under seismic and static analysis. The deformation of wall under the static and dynamic manner varies in a wide range. On the other hand, tensile loads that are produced in nails under the static manner are namely 50% less than the dynamic manner.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Mahdi Maleki ◽  
Ali Nabizadeh

AbstractThe control of deformation and stability of the deep excavation walls under seismic and static loads is one of the most important issues in geotechnical engineering. Therefore, in the present study, using the finite element method and taking into account Hardening soil's behavioural model, the effect of different parameters affecting the performance of the deep excavation walls with the guardian truss structures using quasi-static analysis and its comparison with static analysis has been performed. According to the most important results, increasing in the geotechnical parameters of soil such as cohesion, friction angle and elastic modulus will reduce the maximum horizontal displacement in the vertical trench wall. Besides, the maximum settling in the adjacent ground and the maximum swelling in the bottom of the excavation will be reduced. In this way, the improvement in soil resistance parameters will increase the safety factor. Conversely, by increasing the horizontal distance between the trusses, the maximum horizontal displacement and the maximum settling in the adjacent ground and the maximum swelling in the bottom of the excavation will increase and the safety factor will be reduced. Also, the findings from this research show that by increasing the horizontal seismic acceleration coefficient (Kh) and as the construction stages progress, the maximum horizontal displacement of the wall, the maximum settling of the adjacent ground of the wall and the maximum swelling on the bottom of the trench increase and the safety factor will decrease. As well as, the results obtained from the quasi-static seismic analysis of the vertical trench restrained by the guardian truss structure such as the maximum horizontal displacement of the vertical trench wall and the maximum settling in the adjacent ground and the maximum swelling of the bottom of the excavation are much more than the static analysis.


2019 ◽  
Vol 9 (1) ◽  
pp. 61
Author(s):  
SINGH RAVIKANT ◽  
KUMAR SINGH VINAY ◽  
YADAV MAHESH ◽  
◽  
◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 40-47
Author(s):  
Anand Dev Bhatt

 Inter-storey drift is an important parameter of structural behavior in seismic analysis of buildings. Pounding effect in building simply means collision between adjacent buildings due to earthquake load caused by out of phase vibration of adjacent buildings. There is variation in inter-storey drift of adjacent buildings during pounding case and no pounding case. The main objective of this research was to compare the inter-storey drift of general adjacent RC buildings in pounding and no pounding case. For this study two adjacent RC buildings having same number of stories have been considered. For pounding case analysis there is no gap in between adjacent buildings and for no pounding case analysis there is sufficient distance between adjacent buildings. The model consists of adjacent buildings having 4 and 4 stories but unequal storey height. Both the buildings have same material & sectional properties. Fast non-linear time history analysis was performed by using El-centro earthquake data as ground motion. Adjacent buildings having different overall height were modelled in SAP 2000 v 15 using gap element for pounding case. Finally, analysis was done and inter-storey drift was compared. It was found that in higher building inter-storey drift is greater in no pounding case than in pounding case but in adjacent lower height building the result was reversed. Additionally, it was found that in general residential RC buildings maximum inter-storey drift occurs in 2nd floor.


2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 207-2016
Author(s):  
Guillermo Martinez ◽  
David Castillo ◽  
José Jara ◽  
Bertha Olmos

This paper presents a first approximation of the seismic vulnerability of a sixteenth century building which is part of the historical center of Morelia, Mexico. The city was declared World Heritage by United Nations Educational, Scientific and Cultural Organization in 1991. The modeling and analysis of the building was carried out using a three-dimensional elastic tetrahedral finite elements model which was subjected to probabilistic seismic demands with recurrences of 500 yrs and 1000 yrs in addition to real seismic records. The model was able to correctly identify cracking pattern in different parts of the temple due to gravitational forces. High seismic vulnerability of the arched window and the walls of the middle part of the bell tower of the temple was indicated by the seismic analysis of the model.


Sign in / Sign up

Export Citation Format

Share Document