Comparison of Interstorey Drift in General RC Buildings in Pounding and No Pounding Case

2020 ◽  
Vol 2 (1) ◽  
pp. 40-47
Author(s):  
Anand Dev Bhatt

 Inter-storey drift is an important parameter of structural behavior in seismic analysis of buildings. Pounding effect in building simply means collision between adjacent buildings due to earthquake load caused by out of phase vibration of adjacent buildings. There is variation in inter-storey drift of adjacent buildings during pounding case and no pounding case. The main objective of this research was to compare the inter-storey drift of general adjacent RC buildings in pounding and no pounding case. For this study two adjacent RC buildings having same number of stories have been considered. For pounding case analysis there is no gap in between adjacent buildings and for no pounding case analysis there is sufficient distance between adjacent buildings. The model consists of adjacent buildings having 4 and 4 stories but unequal storey height. Both the buildings have same material & sectional properties. Fast non-linear time history analysis was performed by using El-centro earthquake data as ground motion. Adjacent buildings having different overall height were modelled in SAP 2000 v 15 using gap element for pounding case. Finally, analysis was done and inter-storey drift was compared. It was found that in higher building inter-storey drift is greater in no pounding case than in pounding case but in adjacent lower height building the result was reversed. Additionally, it was found that in general residential RC buildings maximum inter-storey drift occurs in 2nd floor.

2020 ◽  
Vol 20 (01) ◽  
pp. 35-46
Author(s):  
Nugraha Bintang Wirawan ◽  
Siska Apriwelni

[EN] Lampung, a province where Institut Teknologi Sumatera (ITERA) is located, is an area that has a high level of seismicity. This research takes a case study of the Building E ITERA which has a dilatation building concept. Due to dilatation, inter-buildings have the risk of collisions because of earthquake loads. The purpose of this study is to determine the value of joint displacement in adjacent buildings when given a dynamic load of Time History and determine whether the adjacent buildings experience a pounding effect. A Time History earthquake load data that has been matched with the Lampung region response spectrum by software is applied to the model of Building E. Building E is modeled according to the as built drawing data and the results of field checking. Structure is analyzed using software. The results of the study showed that the structure of the Building E which was loaded by Loma Prieta earthquake that has been matched would experience inter-building collisions. Further research using earthquake record data taken in areas within certain radius from ITERA is need to be conducted to obtain more accurate results.


2015 ◽  
Vol 744-746 ◽  
pp. 890-893
Author(s):  
Xun Wu ◽  
Yong Lan Zhang

In this paper, SAP2000 and ANSYS software are used to modeling and analysis athree-span continuous beam bridge with high piers case study.By using differentbearing types and combinations to form different options, create two finiteelement models.Analysis dynamic characteristics ,elastic response spectra,linear time history and nonlinear time history .And focus on comparing dynamiccharacteristics of the earthquake response of the two programs .Running outputdata processing and comparison results show that the application of thedifferent parameters of the rational combination of rubber bearing basin bridgearrangement has better seismic performance.


Author(s):  
Mr. Rohit Kiran Chaudhari

It was discovered that reinforced concrete elevated water tanks with frame staging outperformed reinforced concrete elevated water tanks with shaft staging in terms of seismic resistance. These can be due to the frame staging's seismic energy absorption capability. As a result, the primary goal of this research is to better understand the seismic behavior and performance characteristics of elevated water tanks with frame staging. Furthermore, when compared to other shapes, circular tanks have the smallest surface area for a given tank size. As a result, the amount of material needed for a circular water tank is less than for other shapes. As a result, a circular water tank was chosen, and seismic analysis of elevated RC circular water tanks was carried out according to IITK-GSDMA guidelines, with the behavior of the water tank analysed for various parameters such as zone factor, soil condition, and different staging heights. SAP 2000 was used to determine the structure's modal characteristics (mode shapes and modal participation mass ratio).


2009 ◽  
Vol 43 (1) ◽  
pp. 73-92
Author(s):  
Charles Kubic

AbstractThree numerical methods are used to model the structural response of Bremerton drydock no. 6 to the 2001 Nisqually earthquake. The models considered include: (1) a numerical linear-elastic soil response model, (2) a numerical non-linear time-history response model, and (3) a non-linear finite element model. The results of the models are compared to the observed drydock response and each other in order to determine their effectiveness in modeling drydock structures. The research demonstrated that the non-linear finite element program PLAXIS is suitable for the seismic analysis of drydocks. In addition, the research showed that the existing United States Army Corps of Engineers program CorpsWallROTATE is not suited for the dynamic analysis of drydocks; while a method developed by Wood in 1973 could be further developed to be used as a linear approximation of the drydock’s time-history seismic response. The research is presented to assist in the development of comprehensive seismic drydock design standards.


2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Edisson Moscoso ◽  
Luis Quiroz

Currently, it is considered that seismic actions act independently in two or three main directions orthogonal to each other, applying them to the building, without this necessarily being valid. It is for such, that seismic analysis of buildings should consider the bidirectional effects that seismic actions have, being possible if an angle of real incidence of each seismic action was considered, to estimate the maximum effects of the structural elements. These effects will be analyzed by using the linear time-history analysis of 11 structures with different rigidities and eccentricities in both directions, using angles of incidence every 10° and 20 Peruvian seismic records between very rigid, intermediate and soft soils obtained from data base of CISMID and IGP. Afterwards, a non-linear time-history analysis will be carried out, which will be applied to one of the 11 structures and use angles of incidence every 10° and a seismic record. Likewise, 2 models will be made to scale so that they are tested on a platform of six degrees of freedom, entering the records of the accelerations in their three directions. The maximum responses of all the verifications will be compared with the maximum response of the spectral modal analysis obtaining linear rules for amplification factors. Finally, it will be obtained a relation between the spectral modal analysis and the time-history analysis that consider the effects of the bidirectionality and the angle of incidence in reinforced concrete structures.


2020 ◽  
Vol 14 (1) ◽  
pp. 55-59
Author(s):  
Maria S. Barabash ◽  
Bogdan Y. Pysarevskyi ◽  
Yaroslav Bashynskyi

The purpose of this paper is to justify that it is necessary to take into account physical and mechanical properties of soil and different materials of erected structures for damping vibrations in dynamic loads, and to suggest tools for modelling the damping effect (natural or engineering induced) between foundation and soil. A technique is suggested for modelling the behavior of structure in time history analysis taking into account material damping. When solving this problem, the following results were obtained: the physical meaning of material damping was described; Rayleigh damping coefficients were computed through modal damping coefficients. Numerical analysis was carried out for the structure together with soil in earthquake load. Time history analysis was carried out for the problem. Peak values of displacement, speed and acceleration at the roof levels were compared. Analysis results were compared (with and without taking into account material damping). Significant influence of damping on the stress-strain state of the structure has been confirmed.


2017 ◽  
Vol 13 ◽  
pp. 20 ◽  
Author(s):  
Petr Čada ◽  
Jiří Máca

This paper investigates effects of the seismic load to a structure. The article describes main methods of the definition and practical application of the seismic load based on the Standard Eurocode 8. There was made a comparison of all methods using the same structure. A simple two-storeyed concrete 2D-frame with fixed joints was chosen. A one another model with rigid beams for some calculations was defined. The second model can be used for hand-calculations as a cantilever with two masses. The paper describes main dynamic properties of the chosen structure. Seismic load was defined by lateral force method, modal response spectrum, non-linear time-history analysis and pushover analysis. The time-history analysis is represented by accelerograms. There were made linear and non-linear calculations.


2021 ◽  
Vol 2 (4) ◽  
pp. 820-840
Author(s):  
Francesco Nigro ◽  
Adamo Zinco ◽  
Enzo Martinelli

Existing reinforced concrete (RC) buildings in Europe have generally been designed without proper consideration of seismic actions and capacity design principles, and thus they tend to be vulnerable to earthquakes. Moreover, since a significant proportion of the aforementioned buildings were developed during the 1950s and 1960s, they are currently close to the end of their service life. Therefore, seismic assessment of existing RC building is a major issue in structural engineering and construction management, and the related seismic analyses should take into account the effect of material ageing and degradation. This paper proposes a practice-oriented procedure for quantifying seismic reliability, taking into account the main effects of carbonation-induced degradation phenomena. It summarizes the main aspects of the most up-to-date models for the seismic degradation of concrete and RC members and shows how nonlinear static (pushover) analyses can be utilized (in lieu of the most time-consuming non-linear time history analyses) in quantifying seismic reliability with respect to the performance levels of relevance in seismic engineering. A relevant case study is finally considered with the aim to showing how some parameters, such as exposure class and cover thickness, affect the resulting seismic reliability of existing RC buildings.


2021 ◽  
Author(s):  
Sinem Tola ◽  
Joaquim Tinoco ◽  
José C. Matos ◽  
Elişan Filiz Piroğlu

<p>Turkey is located on active seismic fault lines. Having this major issue makes the seismic performance analysis a critical step to decide the safety or whether demolishing or reinforcing is more efficient. In this study, a seismic analysis comparison is performed on an existing steel structure via SAP2000 software. The seismic analysis method is Linear Time History Analysis. A comparison of results attained from dynamic analysis is obtained for an existing steel structure serving as a garage in Istanbul, Turkey. The results are demonstrated using graphics where base shear forces as well as lateral displacements obtained for two models are plotted for comparison.</p>


Sign in / Sign up

Export Citation Format

Share Document