scholarly journals In vitro comparison of two titanium dental implant surface treatments: 3M™ESPE™ MDIs versus Ankylos®

Author(s):  
Jagjit Singh Dhaliwal ◽  
Juliana Marulanda ◽  
Jingjing Li ◽  
Sharifa Alebrahim ◽  
Jocelyne Sheila Feine ◽  
...  
2021 ◽  
Vol 11 (14) ◽  
pp. 6353
Author(s):  
Vittoria D’Esposito ◽  
Josè Camilla Sammartino ◽  
Pietro Formisano ◽  
Alessia Parascandolo ◽  
Domenico Liguoro ◽  
...  

Background: The aim of this research was to evaluate the effects of three different titanium (Ti) implant surfaces on the viability and secretory functions of mesenchymal stem cells isolated from a Bichat fat pad (BFP-MSCs). Methods: Four different Ti disks were used as substrate: (I) D1: smooth Ti, as control; (II) D2: chemically etched, resembling the Kontact S surface; (III) D3: sandblasted, resembling the Kontact surface; (IV) D4: blasted/etched, resembling the Kontact N surface. BFP-MSCs were plated on Ti disks for 72 h. Cell viability, adhesion on disks and release of a panel of cytokines, chemokines and growth factor were evaluated. Results: BFP-MSCs plated in wells with Ti surface showed a viability rate (~90%) and proliferative rate comparable to cells plated without disks and to cells plated on D1 disks. D2 and D4 showed the highest adhesive ability. All the Ti surfaces did not interfere with the release of cytokines, chemokines and growth factors by BFP-MSCs. However, BFP-MSCs cultured on D4 surface released a significantly higher amount of Granulocyte Colony-Stimulating Factor (G-CSF) compared either to cells plated without disks and to cells plated on D1 and D2. Conclusions: The implant surfaces examined do not impair the BFP-MSCs cell viability and preserve their secretion of cytokines and chemokines. Further in vitro and in vivo studies are necessary to define the implant surface parameters able to assure the chemokines’ optimal release for a real improvement of dental implant osseointegration.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Carlos Nelson Elias ◽  
Patricia Abdo Gravina ◽  
Costa e Silva Filho ◽  
Pedro Augusto de Paula Nascente

Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength.Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed.Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification) were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN). The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells.Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%). The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm), suggested that FN incorporation is an important determinant of thein vitrocytocompatibility of the surfaces.Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.


2007 ◽  
Vol 33 (4) ◽  
pp. 177-185 ◽  
Author(s):  
Gintaras Juodzbalys ◽  
Marija Sapragoniene ◽  
Ann Wennerberg ◽  
Tomas Baltrukonis

2020 ◽  
Author(s):  
Mohamed Assadawy ◽  
Eman Helmy

Abstract Background: Biofilm formation on implants is the primary factor for implant loss. Porphyromonas gingivalis is a highly virulent pathogen that contributes to the development of periodontal disease and implant failure.Objectives: The goals of this study are to investigate the formation of P. gingivalis biofilms on nanoselenium-coated implants in vitro and the potential use of nanoselenium for peri-implantitis treatment.Materials and methods: Porphyromonas gingivalis ATCC 33277 was cultured to obtain an in vitro mature biofilm on the surface of the Hexacone implant system. The fixture was added into an Eppendorf tube and placed in a sterile air laminar flow cabinet. An automatic machine learning utility was used to calculate the biofilm size on the implant surface from SEM images, and the Trainable Weka Segmentation plugin in Fiji software was employed.Results The SeNPs affected the P. gingivalis biofilm (the effect size was 80.17%), and the difference was highly significant (p 0.000).Conclusion: The use of SeNPs as dental implant coatings presented promising anti-P. gingivalis biofilm activity.Clinical relevance:: The development of a dental implant surface treatment with efficient antibacterial properties, especially against the most virulent pathogens, has not yet been established.Principal findings: Nanoselenium particles as an implant surface coating prevented Porphyromonas gingivalis biofilm formation to a striking extent.Practical implication: Nanoparticles could provide a novel state-of-the-art therapeutic approach for Porphyromonas gingivalis (P. gingivalis biofilm on dental implants)


2013 ◽  
Vol 29 (6) ◽  
pp. 1977-1985 ◽  
Author(s):  
Marina Salah Kamel ◽  
Amardeep Khosa ◽  
Andrew Tawse-Smith ◽  
Jonathan Leichter

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3220
Author(s):  
Željka Petrović ◽  
Ankica Šarić ◽  
Ines Despotović ◽  
Jozefina Katić ◽  
Robert Peter ◽  
...  

Organophosphorus compounds, like bisphosphonates, drugs for treatment and prevention of bone diseases, have been successfully applied in recent years as bioactive and osseoinductive coatings on dental implants. An integrated experimental-theoretical approach was utilized in this study to clarify the mechanism of bisphosphonate-based coating formation on dental implant surfaces. Experimental validation of the alendronate coating formation on the titanium dental implant surface was carried out by X-ray photoelectron spectroscopy and contact angle measurements. Detailed theoretical simulations of all probable molecular implant surface/alendronate interactions were performed employing quantum chemical calculations at the density functional theory level. The calculated Gibbs free energies of (TiO2)10–alendronate interaction indicate a more spontaneous exergonic process when alendronate molecules interact directly with the titanium surface via two strong bonds, Ti–N and Ti–O, through simultaneous participation common to both phosphonate and amine branches. Additionally, the stability of the alendronate-modified implant during 7 day-immersion in a simulated saliva solution has been investigated by using electrochemical impedance spectroscopy. The alendronate coating was stable during immersion in the artificial saliva solution and acted as an additional barrier on the implant with overall resistivity, R ~ 5.9 MΩ cm2.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Luigi Laino ◽  
Marcella La Noce ◽  
Luca Fiorillo ◽  
Gabriele Cervino ◽  
Ludovica Nucci ◽  
...  

In the field of biology and medicine, one hears often about stem cells and their potential. The dental implant new surfaces, subjected to specific treatments, perform better and allow for quicker healing times and better clinical performance. The purpose of this study is to evaluate from a biological point of view the interaction and cytotoxicity between stem cells derived from dental pulp (DPSCs) and titanium surfaces. Through the creation of complex cells/implant, this study is aimed at analyzing the cytotoxicity of dental implant surfaces (Myth (Maipek Manufacturer Industrial Care, Naples, Italy)) and the adhesion capacity of cells on them and at considering the essential factors for implant healing such as osteoinduction and vasculogenesis. These parameters are pointed out through histology (3D cell culture), immunofluorescence, proliferation assays, scanning electron microscopy, and PCR investigations. The results of the dental implant surface and its interaction with the DPSCs are encouraging, obtaining results increasing the mineralization of the tissues. The knowledge of this type of interaction, highlighting its chemical and biological features, is certainly also an excellent starting point for the development of even more performing surfaces for having better healing in the oral surgical procedures related to dental implant positioning.


Sign in / Sign up

Export Citation Format

Share Document